
Reproducing Crash Consistency Experiments with
ALICE

Milan Bhandari and Mridu Nanda
1 Introduction
File systems use a variety of well-studied techniques to pro-
vide crash consistency for file system metadata. Some of
these techniques include logging, copy-on-write, and soft
updates. Many modern applications are built atop these file
systems, and therefore get file-system level crash consistency
guarantees for free. However, an application must initiate its
own application-level crash consistency protocol to ensure
that user-level data structures are consistent post-crash. This
sequence, known as an update protocol, invokes system calls
that update the underlying files and directories in a recover-
able way [4]. For example, the default setting of SQLite uses
an update protocol called rollback journaling to maintain
transactional atomicity.
Unfortunately, applications often implement update pro-

tocols incorrectly. Incorrect update protocols are primarily
a result of a mismatch of expectations: the application de-
veloper assumes incorrect invariants about the underlying
file system, causing the update protocol to behave in an un-
expected manner. For example, an update protocol might
assume the writes are persisted in program order; however,
most modern file systems re-order writes to avoid high la-
tency seek times. The multitude of possible application states
and the non-deterministic nature of application state post-
crash makes it even more difficult to write a complete and
correct update protocol.

The authors of "Application Crash Consistency and Perfor-
mance with CCFS" hypothesize that existing update proto-
cols would work (mostly) correctly on an ordered and weakly
atomic file system. To this end, they designed the crash con-
sistent file system (CCFS), which improves application crash
consistency. Experiments verified that applications running
atop CCFS were significantly more crash consistent than
ext4 [3]. In this paper, we attempt to reproduce the crash
consistency experiment from the original paper.
The rest of the paper is structured as follows. In section

2 we give a recap of CCFS. Next, we outline the design for
our reproduction experiment by describing the experimental
tools (Sections 3.1 and 3.2) and shortcomings (Section 3.3) of
the original experiment. Section 4 describes the implementa-
tion of our reproduction experiment and section 5 presents
our results. We conclude with a discussion of CCFS in light
of our reproduction experiment.

2 CCFS
CCFS improves application crash consistency by providing
two guarantees: ordering and weak atomicity. The ordering

property states that the effects of system calls should be
persisted on disk in program order. This property disallows
the standard re-ordered write optimization, which is ubiq-
uitous in modern file systems. More generally, the order
property ensures that a system crash cannot produce a state
where the system calls appear re-ordered. Weak atomicity
guarantees that system calls are atomic across a crash. For
example, a directory operation like rename should appear as
an atomic operation across a system crash. Weak atomicity
also requires: (1) writing to a file in sector-sized increments
be atomic, and (2) writing to a file while increasing the file’s
size to be atomic.
CCFS implements ordering and weak atomicity with the

stream abstraction. A stream represents a sequence of oper-
ations that are committed in program order. An application
typically corresponds to a single stream; however, applica-
tions with multiple streams are also possible. CCFS re-orders
operations from different streams to reduce the overheads
associated with ordering per-stream. Since streams are not
uniquely associated with a specific file or directory, two
streams may perform operations on logically related data.
Therefore, the stream implementation takes special care to
handle these dependencies.

3 Experiment Design
Our goal was to reproduce Table 1, as copied from the origi-
nal CCFS paper. This experiment compared the crash con-
sistency of applications running atop CCFS with that of ap-
plications running atop ext4. Five different programs, which
included version control systems (e.g., Git) and data systems
programs (e.g., SQLite), were tested.

Application ext4 ccfs
Level DB 1 0
SQLite-Roll 0 0
Git 2 0
Mercurial 5 2
Zookeeper 1 0

Table 1. Vulnerabilities found using ALICE in the original
CCFS experiment. Each reported vulnerability is location in
the application source code that has to be fixed.

Rather than running workloads from these applications di-
rectly on hardware, the Application-Level Intelligent Crash
Explorer (ALICE) tool was used to simulate the guarantees
provided by each filesystem. This led the experiment to be
split in roughly two parts: (1) determining the relevant persis-
tence properties for each file system, and (2) simulating these



properties using ALICE. We describe both these steps and
give our critique of the overall experiment in the following
sections.

3.1 BoB
The first step in the experiment was to determine the persis-
tence properties for each filesystem to be tested. Persistence
properties are broadly split into two categories: ordering
guarantees and atomicity guarantees. Ordering guarantees
specify which operations a filesystem will persist to disk
before others. Atomicity guarantees specify which disk op-
erations are atomic in the context of a system crash.

The authors of the CCFS paper used previous results from
the Block Order Breaker (BoB) tool to determine the atomic-
ity and ordering guarantees provided by ext4. These results
are reproduced in Table 2.

Persistence Property File System

ex
t4
-w

rit
eb
ac
k

ex
t4
-o
rd
er
ed

ex
t4
-n
od

el
al
lo
c

ex
t4
-d
at
aj
ou

rn
al

cc
fs

Atomicity
Single sector overwrite
Single sector append ×
Single block overwrite × × × ×
Single block append × ×
Multi-block append/writes × × × × ×
Multi-block prefix append ×
Directory op
Ordering
Overwrite→ Any op × × ×
[Append, rename] → Any op ×
O_TRUNC Append → Any op ×
Append → Append (same file) ×
Append → Any op ×
Dir op → Any op × ×

Table 2. The table shows atomicity and ordering persistence
properties for ext4 and CCFS. The CCFS authors empirically
determined the properties of ext4 using the BoB tool. We
included CCFS’s properties, as described by the paper, for
completeness. 𝑋 → 𝑌 specifies that 𝑋 must be persisted
to disk before 𝑌 . [𝑋,𝑌 ] → 𝑍 indicates that 𝑌 follows 𝑋 in
program order, and that they both must be persisted to disk
before 𝑍 . A × indicates that the original authors found a
reproducible test case where the property fails in that file
system

At a high level, BoB collects block-level traces underneath a
file system and re-orders them to explore possible on-disk
crash states that may arise [4]. Unfortunately, BoB is not

available as an open-source project, so we did not verify
these results. However, recent work [2] [1] independently
verifies the results in Table 2 from BoB.

Luckily, the CCFS paper describes the relevant ordering
and atomic guarantees for CCFS. Even though these proper-
ties were not tested by BoB, we include these properties in
the table below for sake of completeness.
A running challenge in our reproduction effort involved

decoding the exact meaning of the persistence properties
listed in Table 2. For example, it was unclear if the property
‘Overwrite→ Any op‘ should be interpreted as:

1. An overwrite to a file should be persisted before any
other operation on the same file

2. OR An overwrite to a file should be persisted before
any other operation that affects the file system

We clarified some of the properties while corresponding with
the author of the CCFS paper. We used our own interpreta-
tion for the remaining properties, taking extra care to keep
these assumptions consistent. For example, we interpreted
ordering constraints of the form ‘X→ Any Op‘ to mean "X
should be persisted before any file system operations follow-
ing X in program order". We describe our interpretation for
each of the persistence properties below.

3.1.1 Atomicity.
• Single sector overwrite is a file write within one disk
sector that does not modify the file’s size.

• Single sector append is a file write within one disk
sector that also modifies the file’s size.

• Single block overwrite is a file write within one block-
size region that does not modify the file’s size.

• Single block append is a file write within one blocksize
region that also modifies the file’s size.

• Multi-block append/writes are file writes that cross
blocksize boundaries. Suppose the user makes a write
call with data 𝐴𝐵 where each letter represents a block.
If the filesystem guarantees multi-block append/write
atomicity, then possible states are either empty or 𝐴𝐵.
In contrast, if the file system promises no append atom-
icity, the file could have multiple states - empty,𝐴𝐵, 0𝐵,
𝐴0,𝐴%, %𝐵, etc. where % represents a block of random
data and 0 represents a block of 0 data.

• Multi-block prefix append are file writes that cross
blocksize boundaries that are persisted to disk in atomic
blocksize units, in sequential order. Suppose the user
makes a write call with data 𝐴𝐵 where each letter
represents a block. If the filesystem guarantees multi-
block prefix append atomicity, then possible states are
either empty, 𝐴 or 𝐴𝐵.

3.1.2 Ordering.
• Overwrite → Any op: A write that does not modify
a file’s size should be persisted before any other file
system operation that follows in program order.

2



• [Append, rename] → Any op: An append operation
followed by a rename on the same file should be per-
sisted before any other file operation that follows in
program order.

• O_TRUNC Append→ Any op: A truncate operation
that extends the length of a file should be persisted
before any other file system operation that follows in
program order.

• Append→ Append (same file): A write that modifies a
file’s size should be persisted before a following write
that modifies the same file’s size.

• Append→ Any op: A write that modifies a file’s size
should be persisted before any other file system oper-
ation that follows in program order.

• Dir op→ Any op: A directory operation (like mkdir)
should be persisted before any other file system oper-
ation that follows in program order.

3.2 ALICE
The ALICE tool models the behavior of an application under
different filesystem guarantees. The user must implement
two components for each program she wishes to test: a work-
load script and a checker script. The user must also imple-
ment an abstract persistent model (APM) for each filesystem
she wishes to test.

3.2.1 Micro Operations & Disk Operations. ALICE re-
quires a trace of the program’s system calls, and a byte dump
to check the consistency of a workload with an APM. First,
ALICE parses system-calls into micro-operations, which ab-
stract awaymany of the details of individual system calls. For
example, the write(), pwrite(), writev(), and mmap() sys-
tem calls are all translated into either overwrite or append
micro-operations. System calls that do not affect disk state
are discarded. From here, the micro-operations are trans-
formed into disk-operations. Disk operations are the small-
est atomic modification that can be performed on a disk
region. There are six disk operations: sync, stdout, write,
truncate, create dir entry, and delete dir entry.

3.2.2 Abstract PersistenceModel. TheAPM for a filesys-
tem codifies the filesystem’s constraints as defined by Ta-
ble 2 into Python code. These constraints enable ALICE to
generate a set of crash states: states in which a working
directory could appear to a program after a system crash.
ALICE explores these crash states to find vulnerabilities in
the application’s update protocol.

3.2.3 SimulationModes. It is not feasible for the APM to
simulate all possible crash states. Consider𝑁 1-byte write()
calls that overwrite different parts of file. If the APM does
not include any ordering constraints, then the write() calls
will be persisted in an arbitrary order. As a result, the APM
would have to run 2𝑁 simulations to capture all possible
crash states.

A user can define a simulation mode to limit the number
of crash states the APM must explore. The simulation mode
consists of a split mode (either count or aligned) and a num-
ber of splits. By setting the APM’s mode, the user controls
the granularity of the mapping between micro-operations
and disk operations. Consider a write micro-operation that
is writing from offset 4,000 to 13,000 in a file. If the user
simulates the filesystem in (aligned, 4096) mode, then
ALICE will produce the following disk operations:

1. Write from offset 4000 to 4095 (inclusive)
2. Write from offset 4096 to offset 8191
3. Write from offset 8192 to 12,287
4. Write from offset 12,288 to 13,000

In contrast, if the user runs the simulation in (count, 1)
mode, then ALICE will only produce a single write diskop,
which writes from offset 4000 to 13,000. However, if the user
runs the simulation in (count, 3) mode, then ALICE will
produce the following disk operations:

1. write from offset 4000 to 7000
2. write from offset 7000 to 10,000
3. write from offset 10,000 to 13,000

More generally, in the countmode, a single micro-operation
will be broken down into 𝑠 disk operations of equal size,
where 𝑠 represents the split number. In the aligned mode, a
micro-operation will be partitioned into disk operations of
size 𝑠 .
Naturally, simulation modes can help model an APM’s

atomicity constraints. For example, if the file system guaran-
tees atomic sector writes, the user can run the corresponding
APM in (aligned, 512) mode. By splitting a large write
into multiple sector-sized writes, ALICE creates the appro-
priate intermediates crash states for the APM. However, the
simulation mode itself is not sufficient for implementing all
atomicity constraints. For example, ext4-ordered requires
atomic directory operations, which cannot be modeled by
only specifying a simulation mode. Rather, we created cyclic
dependencies between disk operations to model a set of op-
erations that should be perceived as an atomic unit.
Since the user determines which subset of crash states

ALICE will explore, the user must carefully specify the ap-
propriate modes to detect all relevant crash states for a given
APM. Consider a filesystem does not guarantee atomicity for
certain disk operations. In this case, the user must specify a
simulation mode that includes crash states where those oper-
ations are partially persisted. The user can specify multiple
simulation modes to run a single ALICE experiment. For ex-
ample, a single ALICE experiment can be run in (aligned,
512) and (aligned, 4096) modes concurrently. In any
case, the aggregate results from all simulation modes should
contain all the relevant crash states for a given filesystem.

3.2.4 Application Scripts. As mentioned above, the AL-
ICE user must write workload and checker scripts for each

3



tested application. The workload script generates a system
call trace and byte-dump using a customized version of strace.
The checker script verifies each crash state against the user’s
expectations about the durability and consistency of the
application. As such, the checker application takes two ar-
guments, the path to the crash state and the path to the file
that contains the stdout until the simulated crash.

3.2.5 Dynamic and Static Vulnerabilities. ALICE reports
discovered vulnerabilities as either dynamic or static:

• A dynamic vulnerability is a system call that results
in an inconsistency. ALICE finds dynamic vulnerabili-
ties by incrementally simulating each system call, and
running the outputted state through the user-defined
application checker.

• A static vulnerability is a source code line that results
in an inconsistency. Multiple dynamic vulnerabilities
can correspond to a single static vulnerability. Suppose
an inconsistency-causing write system call is called in
a for loop ten times. Using the strace log, ALICE would
detect ten distinct dynamic vulnerabilities. However,
ALICE would only detect one static vulnerability, since
each system call originated from the same source line
within the for loop.

Table 1 reports static vulnerabilities.

3.3 Critique
In this section we give our critiques of the original experi-
ment. We include two broad categories of critiques: experi-
mental setup and result quality.

3.3.1 Experimental Setup. The experimental setup for
ALICE included installing Python 2.7 and a few other depen-
dencies. Overall, the tool was straightforward to set up.
We found that variable definitions in the ALICE code

conflicted with the description of the tool in the original
ALICE paper [4]. For example, the micro-operations in the
ALICE code refer to the logical operations from the ALICE
paper. Also, the disk-operations in the code refer to micro-
operations from the paper. We use the definitions from the
code as described in Section 3.2 rather than the ALICE paper.

The open-source version of ALICE came with one default
APM implementation. Unfortunately, APM models for CCFS
and ext-4 were not available. The ALICE tool itself is not
as modular as we would have expected. Writing new APMs
required us to copy multiple files and required careful modi-
fication to program logic.

3.3.2 Result Quality. Table 1 compares results from simu-
lating ext4 and CCFS usingALICE. However, it fails to specify
which mode of ext4 was used during these simulations. After
communicating with one of the authors, we learned that the
experiment was run with the ordered mode. Interestingly,
Table 2 shows that the nodelalloc, and datajournal modes
of ext4 provide stronger ordering and atomicity guarantees

than those provided by the ordered mode of ext4. Therefore,
we hypothesized that ext4-nodelalloc and ext4-datajournal
might see fewer vulnerabilities than the ext4-ordered mode.
To provide a fairer comparison, our experiment compared
workloads on CCFS with each of the ext4 modes.

Table 1 documents the crash consistency of five different
programs, which include version control systems (e.g., Git)
and data systems programs (e.g., SQLite). We assume that
these programs are sensitive to the underlying assumptions
of the filesystem on which they run, both in terms of reorder-
ing and atomicity. The results may have been even more
convincing if the authors had tested (1) several workloads
for each program, and (2) a greater number of programs.

4 Experiment Implementation
Our primary implementation effort was to create APMs for
CCFS and different modes of ext4. We also created workload
and checker scripts for Mercurial and SQLite3, basing them
closely on the provided Git and LevelDB scripts, respectively.

4.1 CCFS APM
The CCFS ordering model requires that all operations within
a single stream are persisted in program order. We assumed
that each application uses exactly one stream. The following
Python snippet from our CCFS APM simulates the depen-
dencies required by stream abstraction:

1 for i in range(1, len(ops)):

2 ops[i]. hidden_dependencies.add(i-1)

This for loop iterates through disk operations in program
order. For each disk operation, a dependency is added to the
previous disk operation. As a result disk operation 𝑖 cannot
be persisted before disk operation 𝑖 − 1.

CCFS’s weak atomicity propertymakes the following guar-
antees:

• Sector-sized overwrite are atomic. To model this guar-
antee, we ran CCFS in (’aligned’, 512) mode. As
mentioned above, this breaks write micro-operations
into multiple disk-operations that each write up to 512
bytes. Thus, the crash states are limited to those on
sector size boundaries.

• Directory operations are atomic. Directory operations
include the creation, deletion, and renaming of files
and hard links. Implementing an atomic Renamemicro-
operation was particularly interesting since it decom-
poses into multiple disk operations. We achieved atom-
icity by adding a cyclic dependency between each of
the disk operations.

• Atomic appends. If a system call appends data to the
end of a file, then both increasing the file size and
the writing of data to the newly appended portion of
the file should be atomic together [3]. To model this

4



semantic, we commented code from the default APM,
which simulated non-atomic sector-sized appends.

We have marked each of these changes in the aliceccfs.py
and aliceccfsexplorer.py files.

4.2 ext4 APMs
As seen in Table 2, the various ext4 modes have differing
atomicity and ordering constraints. Some of the guarantees
overlapped with CCFS’s guarantees. For example, all modes
of ext4 guarantee atomic directory operations. Therefore,
we reused some of the CCFS APM implementation in our
various ext4 APM implementations.

Implementing ext4-ordered and ext4-nodelalloc modes
provided an interesting challenge. Both of these modes guar-
antee atomic single block appends, but do not guarantee
atomic single block overwrites. To simulate the crash states
relating to block-sized operations, we ran Alice with the
(aligned, 4096) mode. We also added conditional logic
to ensure that micro-operations decomposed to block-sizes
disk operations during overwrites, but not during appends.

5 Results
We tested four applications using the ext4 and CCFS APMs.
We used the static vulnerability count for our measurements,
as was done in the CCFS paper. Table 3 summarizes our
results:

Application File System

ex
t4
-w

rit
eb
ac
k

ex
t4
-o
rd
er
ed

ex
t4
-n
od

el
al
lo
c

ex
t4
-d
at
aj
ou

rn
al

cc
fs

Level DB NA 3∗ 3∗ 0 0
SQLite-Roll 0 0 0 0 0
Git 1 0 0 0 0
Mercurial 0 0 0 0 0

Table 3. Vulnerabilities found using ALICE in our repro-
duction experiment. Each reported vulnerability is location
in the application source code that has to be fixed. NA indi-
cates the experiment could not be completed due to memory
constraints. ∗ indicates that the ALICE tool may be over-
reporting the vulnerabilities.

The LevelDB experiments took the longest to run. A com-
bination of (1) a lack of constraints, and (2) numerous ap-
pend micro-operations generated by the LevelDB workload,
caused the number of crash states to explode in ext4-writeback
mode. As a result, our machines did not have enough mem-
ory to complete the LevelDB experiment for this mode (in-
dicated by an ‘NA’ in Table 3). We found three vulnerabili-
ties while simulating ext4-ordered mode and ext4-writeback

mode. However, we suspect that ALICE may be overreport-
ing the number of vulnerabilities is this instance: all three
of the static vulnerabilities involved a similar stack trace
pattern. Thus, we hypothesize the same update sequence is
used multiple times across LevelDB.

Like the original paper, we found zero vulnerabilities while
simulating CCFS. We also found zero vulnerabilities in the
ext4-datajournal simulation, which is intuitive since ext4-
datajournal provides strictly more guarantees than CCFS
according to Table 2.
Our Mercurial experiment yielded different results from

the original CCFS paper. The original experiment discovered
five vulnerabilities using ext4 and two vulnerabilities using
CCFS. In contrast, our reproduction effort found Mercurial
to have zero vulnerabilities under all of our APMs. This
discrepancy could be attributed to us using a newer version
of Mercurial that fixed any previous vulnerabilities. It is
also possible that our Mercurial workload differed from the
original experiment’s Mercurial workload. Unfortunately,
the original paper does not provide much detail or any code
for any application workloads.
We found one vulnerability while running the Git work-

load on the ext4-writeback APM. We saw this vulnerability
disappear when testing the remaining APMs, which provide
stricter ordering guarantees. On further investigation, we
found that this was an ordering vulnerability. Specifically, the
vulnerability was triggered by a reordered append operation
and rename operation. This observation is consistent with
the persistence properties listed in Table 2: ext4-writeback
is the only filesystem that does not provide the Append→
Any op ordering guarantee.

We found zero vulnerabilities in SQLite across all of our
APMs. This result was consistent with Table 1. Upon fur-
ther investigation, we found that SQLite implements an
application-level journal as its update protocol. As a result,
SQLite achieves consistency and durability without having
to rely on the underlying file system. However, application-
level journaling has its costs. In particular, we observedmany
redundant writes in the strace logs produced by the SQLite
workloads. Unfortunately, we did not have enough time to
run performance experiments.

6 Discussion
Overall, the results of our reproduction experiment were
consistent with those reported in the original CCFS paper.
We found that CCFS had zero vulnerabilities for all of the
applications we checked. Therefore, we conclude that order-
ing and weak atomicity are sufficient conditions to improve
crash consistency.
Both ext4-datajournal mode and ext4-nodelalloc mode

provide stronger guarantees about ordering and atomicity
compared to ext4-ordered. Consequently, we hypothesized
that ext4-nodelalloc would result in fewer vulnerabilities,

5



downplaying the results reported in Table X.While we found
that ext4-datajournal yielded the same results as CCFS, we
predict that ext4-datajournal must pay a higher performance
cost for crash consistency. Ext4-datajournal achieves crash
consistency by enforcing a total write order. Total write
order imposes a high performance cost because each data
item must be written twice (rather than only writing the
metadata twice).
Ext4-nodelalloc also provides stronger guarantees about

ordering and atomicity compared to ext4-ordered. However,
our reproduction effort showed that ext4-nodelalloc and ext4-
ordered mode found the same vulnerabilities. Therefore, we
can conclude the original experiment did not overstate the
benefit of CCFS. Ideally, we would have liked to test more
applications to differentiate between ext4-ordered mode and
ext4-nodelalloc mode.
While we were able to test the consistency and durabil-

ity guarantees of CCFS, we were unable to test its actual
implementation and performance. The actual CCFS source
code is not available. Our experiments were also limited to
workloads that we could test on our laptops. Simulating the
crash states generated by LevelDB seemed to be very compu-
tationally expensive, even on a relatively simple workload.

Given more time, we’d liked to have conducted additional
tests including workloads with multiple concurrent users
and distributed data systems.

References
[1] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy,

Emina Torlak, and Xi Wang. 2016. Specifying and Checking File System
Crash-ConsistencyModels. SIGARCHComput. Archit. News 44, 2 (March
2016), 83–98. https://doi.org/10.1145/2980024.2872406

[2] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,
and Vijay Chidambaram. 2018. Finding Crash-Consistency Bugs with
Bounded Black-Box Crash Testing. In Proceedings of the 13th USENIX
Conference on Operating Systems Design and Implementation (Carlsbad,
CA, USA) (OSDI’18). USENIX Association, USA, 33–50.

[3] Thanumalayan Sankaranarayana Pillai, RamnatthanAlagappan, Lanyue
Lu, Vijay Chidambaram, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. 2017. Application Crash Consistency and Performance
with CCFS. In 15th USENIX Conference on File and Storage Technologies
(FAST 17). USENIX Association, Santa Clara, CA, 181–196. https://www.
usenix.org/conference/fast17/technical-sessions/presentation/pillai

[4] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2014. All File Systems Are Not Created
Equal: On the Complexity of Crafting Crash-Consistent Applications. In
Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation (Broomfield, CO) (OSDI’14). USENIX Association,
USA, 433–448.

6

https://doi.org/10.1145/2980024.2872406
https://www.usenix.org/conference/fast17/technical-sessions/presentation/pillai
https://www.usenix.org/conference/fast17/technical-sessions/presentation/pillai

	1 Introduction
	2 CCFS
	3 Experiment Design
	3.1 BoB
	3.2 ALICE
	3.3 Critique

	4 Experiment Implementation
	4.1 CCFS APM
	4.2 ext4 APMs

	5 Results
	6 Discussion
	References

