
Memery: Analyzing Heap Memory for Fun and Profit

Nathan Contreras, Mridu Nanda, Noah Singer
Harvard CS 263

Abstract— Memory reading vulnerabilities allow at-
tackers to siphon sensitive data from a remote victim
process, but time constraints and throughput limitations
may necessitate a method to efficiently identify memory
of interest. Toward this end, we design MEMERY, a black-
box heap analysis algorithm that extracts information
about the high-level program constructs of an executable
with a memory read vulnerability. MEMERY follows
chains of pointers to reliably detect both singly- and
doubly-linked data structures (and any looping within
them) and offers insights about the types of information
stored in the data structures (including pointers to
functions and character strings). Besides singly- and
doubly-linked data structures, MEMERY’s analysis can
be used as a foundation for detecting many other chained
data structures.

I. INTRODUCTION

Analyzing the memory of a program is an area
of interest to the security community because un-
derstanding the data structures it uses can yield in-
formation about its vulnerabilities. Function point-
ers, for example, are high-value targets to attackers
given that their intentional corruption allows the
attacker to gain control of the execution of a
victim process. Moreover, reverse-engineering the
data structures of a program might aid an attacker
in quickly determining the location of sensitive
information amongst vast amounts of memory in
the victim process’s address space.

Prior work in the reverse engineering memory
access/allocation has focused on analyzing pro-
gram binaries to understand the data structures in
use. For instance, REWARDS [2] monitors the pro-
gram’s calls to well-known functions (with known
signatures of parameter variable types) to deter-
mine the types of different variables used by the
program. Furthermore, HOWARD [3] uses dynamic
analysis of a program’s execution and memory
access patterns to determine the data structures
used by a program. Unfortunately, such approaches

are limited by the necessity of the source binary
for the process to analyze.

Given the prevalence of high-value information
stored in memory, other previous work have fo-
cused on creating exploits focused on siphoning
that data from the victim. For instance, Mem-
ory Cartography attacks [1] work by building
an ASLR-resistant relative map of variables in
the memory of a browser renderer process. First,
the attacker analyzes the data section of their
own browser process which has loaded a web-
site that the victim will visit in the future. The
attacker classifies pointer-sized region of memory
as pointer/non-pointer by checking each region to
see if it points to memory allocated by the renderer.
The attacker then creates a refined map by repeat-
edly rebooting the machine, building a new map,
and removing pointers that do not appear in every
map. This reduces false positives (i.e. randomly
valued pointer sized regions that happened to point
to allocated memory during an insignificant num-
ber of iterations of map-building). After a victim
visits an attacker webpage, an attacker-created
Javascript program chases pointers to a C++ vtable
in the map created offline, revealing the absolute
address of one item in the relative map and thus
elucidating the absolute addresses of everything
in the relative map. With this information, the
attacker Javascript can find a desired location in the
victim browser’s memory, such as cookies or other
sensitive data. Memory Cartography’s mapping
approach inspires some of the core ideas behind
MEMERY.

II. MEMERY

Our goal is the black-box analysis of heap
memory; that is, we seek to extract information
about high-level program constructs (in particular,
linked data structures and function pointers) from
heap memory without analyzing the behavior of

assembly instructions in the code segment. We also
avoid using standard debugging instrumentation,
such as GDB, since there are established anti-
reverse-engineering measures to detect debugging
instrumentation and modify program behavior ac-
cordingly [4]. To this end, we introduce MEMERY,
a tool for online heap analysis, with the goal of
contributing meaningfully to the reverse engineer-
ing of arbitrary black-box programs. Section III
describes the design of MEMERY.

MEMERY’s threat model makes several assump-
tions:

• A read vulnerability that allows for access to
arbitrary regions of memory, without causing
segmentation faults.

• A way to leak a single absolute address of an
object on the heap.

Additionally, MEMERY relies on various tunable
parameters that govern, for instance, the size of the
heap. Section IV details how we simulated these
assumptions on toy victim programs; one major
area of future work is relaxing all of these these
assumptions (Section V). MEMERY’s threat model
allows for non-execute (NX) bits and address space
layout randomization (ASLR).

The primary focus of MEMERY is to identify
structured information in (or referenced in) heap
memory. In particular, MEMERY is able to discover
and distinguish various structures (such as various
subtypes of linked lists and binary trees). It also
identifies values that appear to be character strings
or function pointers.

One recurring theme of this paper will be that
each of these identification problems is inherently
poorly-defined, since the goal is to discover ab-
stract and “semantic” patterns in memory usage
with access only to raw memory values, and such
patterns (such as “list” or “tree”) can be mapped
onto actual memory schemes in a massive number
of ways. A consequence of this is that it is in gen-
eral simple to construct programmatic constructs
that exhibit desired behavior (such as “linked list”)
that are not flagged by MEMERY’s heuristics, or
to conversely build programs that do not exhibit
a desired behavior but are indeed indicated by
MEMERY. This will be further discussed in Section
V.

III. DESIGN

A. Definitions
We review some definitions about data represen-

tations in memory:
• Linked data structure: A localized pattern

of memory usage (i.e. a C struct), where
specific instances (“nodes”) of the pattern
are linked to each other by pointers. Linked
data structures store relational information;
for instance, they include lists, which store
sequential information, and trees, which store
hierarchical information.

• Singly vs. multiply linked data structures:
A data structure is singly linked if each
node contains one pointer to another node;
it is doubly linked if each node contains two
pointers to other nodes. A prototypical singly
linked data structure is the linear linked list1,
where each node only stores a pointer to the
next node; a prototypical doubly linked data
structure is the binary tree, where each parent
stores pointers to two of its children. Data
structures can also be triply linked, etc.

• Linear vs. circular data structures: A linear
data structure is one that has a defined “end”
node, in which following pointers always ter-
minates. In the circular data structure, every
node is linked to another node.

• Function pointer: A pointer to an in-program
function (used extensively in representing
object-oriented constructs).

We will also define lower-level memory pat-
terns. Let M [i] denote the value of memory at
an address i. Then we can identify the following
objects:
• Chain: A series of pointers p1, p2, p3, . . . such

that M [p1 + k] = p2, M [p2 + k] = p3, etc.,
where k is a small, positive value called the
chain offset.

• Loop: A chain whose first and last elements
are equal.

See Figure 1 for an illustration of pointers
and chains for several common linked data struc-
tures. In these terms, primary goal of MEMERY
is to bridge the gap between low-level con-
structs (chains and loops) and high-level constructs

1Linked lists can also be doubly linked (“bidirectional”).

1 2 3 4

(a) A singly-linked, circular list with four nodes. The red
arrows are pointers from one node to another. There is a single
chain of length four, and it is a loop.

1 2 3 4

(b) A doubly-linked, linear list with four nodes. The red arrows
point from one node to the next node, and the blue arrows point
from one node to the previous node. There are two chains of
length four (formed by the red pointers and the blue pointers),
and neither is a loop.

1

2 3

4 5 6 7

(c) A binary tree. The red arrows point from a node to its left
child, and the blue arrows point from a node to its right child.
There are four chains; two corresponding to each color (e.g.
(1,2,4) and (3,6) for red).

Fig. 1: Three linked data structures, with descrip-
tions of the corresponding chains.

(linked lists, trees, etc.) It can thus roughly be
divided into two steps:

1) Discover chains.
2) Deduce information about the presence of

structures.

Note, of course, that chains can form arbitrary
graphs on the space of memory locations. Thus,
we will consider the following two above problems
“separately”, in the sense that we will attempt to
find chains in arbitrarily complex node networks,
and then we will make heuristic guesses about
what the chains might represent. These guesses
will involve invariants, which are properties of
collections of chains that “should be expressed” by
a particular type of data structure (such as various
forms of circularity).

B. Specification

We assume the victim process is running on a
64-bit machine, with addresses and data structure
fields aligned on eight-byte boundaries, although
MEMERY is not limited to this specific machine

configuration.2 We also assume that all linked data
structures are allocated on the heap, and that the
heap is a contiguous, accessible region of memory.

C. Singly-Linked Data Structure Algorithm

Address Value Heap Pointer?
0 100
1 “Hello”
2 3 3

3 101
4 “World”
5 6 3

6 102
7 “!”
8 9 3

TABLE I: A toy memory representation of the
beginning of a singly-linked linear list. Each node
in the list stores a number and a string (e.g. (101,
“World”), as well as a pointer to the start of
the next node. When attempting to find a chain
in this region, guessing an offset of k = 1 for
the entry p1 = M [2] = 3 at address 2 will
fail, since M [p1 + k] = “World” is not a heap
pointer. Conversely, guessing an offset of k = 2
will succeed, since p2 = M [p1 + k] = 6 and
p3 = M [p2 + k] = 9 are indeed heap pointers.

The first step in MEMERY is to heuristically
detect singly-linked data structures, which are in-
terpreted as collections of overlapping chains (i.e.
chains that contain common nodes). For instance,
a reverse binary tree (i.e. every node contains
a pointer to its parent) is a singly-linked data
structure that consists of many individual chains.

Before singly-linked data structures can be de-
tected, MEMERY must heuristically guess the start-
ing and ending addresses of the heap. In our
implementation, MEMERY has access to the ab-
solute address v of some object on the heap, as
well as an estimate H for the size of the heap.
MEMERY heuristically treats all values in the range
[v − H, v + H] as heap pointers3 and seeks to

2This assumption can be relaxed — MEMERY’s algorithm would
have to change to track potential data structures aligned at single-
byte boundaries. Extra care would have to be taken to ensure that
detected pointers wouldn’t overlap.

3Assuming that H is large enough that the true heap falls into
this range, there are no false negatives for detecting heap pointers;
false positives are possible (either if H is too large, or if there
is an integer that looks like a heap pointer but doesn’t point to
meaningful data).

construct chains out of such pointers. In particular,
MEMERY iterates through all the potential pointers
labeled above. On a given heap pointer p1, it
guesses possible values for a chain offset k (from
1 up to some fixed maximum offset). For each
combination of p1 and k:

1) Traverse the heap by setting pi+1 := M [pi +
k] until one of the following conditions is
satisfied:
• A loop is detected: We encounter a

pointer pi that was previously encoun-
tered in this same heap traversal.

• We arrive at a pre-existing chain: We
encounter a pointer pi that has been
marked as belonging to an existing chain
Cold.

• The chain ends: We encounter a value
pi that is not within the range of poten-
tial heap pointers. (Typically, pi will be
null.)

2) If the traversal continues past some fixed
minimum depth, we conclude that we have
found a chain. We assign the traversed nodes
to a chain; if we encountered a pre-existing
chain Cold, we assign the nodes to that chain,
or otherwise allocate a new chain and assign
the nodes to that.

See Table I for a graphical representation of this
process.

D. Classifying Node Contents
Once we determine the singly-linked data struc-

tures inside the heap, we want a way to classify the
non-pointer contents of the data structure’s nodes.
In particular, if the pointer in a data structure
occurs at offset k, we are interested in the infor-
mation at positions [0, k) in the data structure.4

MEMERY classifies the elements in the data
structures as either FUNC (corresponding to func-
tion pointers), STR (corresponding to strings), or
INT (the default type of each element). The fol-
lowing subsections address these classifications.

1) Detecting Function Pointers: Given our in-
terest in scoping out function pointers in the
victim’s address space, we create a method for

4We might also be interested in information that occurs after
the pointer field; unfortunately, it is difficult to distinguish such
information from other objects on the heap.

classifying pointers as function pointers with
high certainty. To do so, we leverage the func-
tion calling-conventions of the victim’s operat-
ing system/micro-architecture. Given a value p
which we wish to classify as function-pointer/non-
function-pointer, and our previously established
ability to query for 8 bytes of data stored at any 8-
byte-aligned address in the victim process’s virtual
memory, we proceed as follows:

1) Given the victim’s suspected operating
systems/micro-architecture, we define the
function preamble as Pre. For example, on
Ubuntu Linux 5.0.0-37 x86-64, the first three
assembly operations in a function preamble
are PUSH MOV SUB In this case,
Pre = PUSH MOV SUB. We also define
SzPre as the size of this function preamble
pre in bytes.

2) We query for szpre bytes starting at p in the
victim’s machine. Assume we store these in
an array CandidateP trBytes.

3) We use a disassembler to output the se-
quence of assembly operations interpreted
from CandidateP trBytes, storing this se-
quence as CandidatePre.

4) If Pre is a prefix of CandidatePre, we
know with high certainty that p points to a
region of memory whose first bytes decode
as a valid function preamble in the victim’s
machine, and p is a function pointer. If
not, then the region is highly unlikely to
correspond to valid function code, and p is
not a function pointer.

2) Detecting String Pointers: We also wish
to scope out pointers to character strings in the
victim’s address space, given that strings often
contain sensitive information. Suppose the attacker
is interested in certain types of strings that include
characters in the alphabet Σ and are at least szstr
in length. For example, an attacker hoping to glean
strings representing phone numbers would be inter-
ested in Σ = {′0′,′ 1′,′ 2′,′ 3′,′ 4′,′ 5′,′ 6′,′ 7′,′ 8′,′ 9′}
with szstr = 10 (given that phone numbers are
usually 10 digits). Given a p which we wish to
classify as a string pointer/not string pointer and
the previously established method to query for 8
bytes of data stored at any 8-byte-aligned address
on the victim’s machine, we proceed as follows:

• We query for szstr bytes (assuming each
character is 1 byte) starting at p in the victim’s
machine. Assume we store these in an array
CandidateStrBytes.

• We check if all szstr characters are in Chars.
If so, we know with high certainty that p
points to a region of memory whose first bytes
decode as a character string of interest on the
victim’s machine, and p is a string pointer.
If not, then the region is highly unlikely to
correspond to a valid string, and p is not a
string pointer.

E. Multiply-Linked Data Structure Algorithm

Address Value Heap Pointer?
0 “Hello”
1 3 3

2 NULL
3 “There”
4 6 3

5 0 3

6 “World”
7 9 3

8 3 3

9 “!”
10 NULL
11 6 3

TABLE II: A toy memory representation of a four-
element doubly-linked linear list. Each node in the
list stores a string (e.g. “There”) and pointers to the
start of the next and previous nodes. Guessing an
offset of k = 1 for the entry p1 = M [1] = 3 at
address 1 will succeed in finding the chain (1, 4,
7, 10). However, naı̈vely, an offset of k = 1 for
the entry p1 = M [5] = 0 will also succeed, since
M [0 + 1] = 1 is in a pre-existing data structure;
and so the algorithm will conclude that address
5 (as well as 8) is a pointer in the same singly-
linked data structure. To fix this, we must ensure
that singly-linked data structure nodes are non-
overlapping.

The fundamental challenge when attempting to
identify multiply-linked data structures, or multi-
structs, is that they are difficult to distinguish from
a singly-linked out-of-order data structure (i.e.
where the in-memory order of the nodes differs
from that which would be generated by a traver-
sal). For instance, a doubly-linked linear list with n
nodes might naı̈vely appear to be a singly-linked

data structure with 2n − 1 nodes, which overlap
in pairs (see Table II). Although this ambiguity
is unavoidable, we implement several additional
heuristics in MEMERY’s chain-finding algorithm
to encourage it to correct identify multiply-linked
structures. In particular, when searching from a
given pointer p with purported offset k, we verify
two additional conditions:

1) If we identified p as a memeber of a pre-
existing chain Cold, we check that no pointer
in [p− k, p) is already assigned to Cold.

2) We check that no pointer in [p − k, p) is
already assigned to a chain with offset k.

If either of these conditions occurs, we conclude
that we have selected the wrong offset k and so do
not assign p to that chain. This means that, assum-
ing that we have already seen a sufficiently large
part of the data structure generated by pointers at
one offset (e.g. we have seen several nodes linked
by next pointers in a doubly-linked list), we are
able to avoid assigning pointers at another offset to
the same data structure (e.g. we can avoid previous
pointers being identified as part of the same singly-
linked data structure as next pointers in an in-order,
doubly-linked list). See Section V for a discussion
of where this technique can fall short.

Once we assemble all the chains, we must begin
to identify multistructs. We simply consider the
chains as the vertices of a graph, and there is an
edge between two chains iff they intersect at at
least one element; then the multistructs correspond
to the connected components of this graph.

F. Invariants

Finally, MEMERY must attempt to identify the
“high-level type” of data structure for each mul-
tistruct. We begin computing a number of prop-
erties of a given multistruct, such as the num-
ber of distinct nodes and the number of distinct
chain offsets. (The latter quantity tells us whether
the multistruct is “singly-linked”, “doubly-linked”,
etc.) Then we calculate a number of invariants,
which are high-level properties of structures that
can be used to distinguish between classes of data
structures. In particular, we employ:

1) Overall strong connectedness: Using all the
chains in the multistruct together, is there a
path from every node to every other node?

2) Offset-wise strong connectedness: When re-
stricting to chains of each offset k, is there
a path from every node to every other node?

See Table III for an example of how these in-
variants are useful in distinguishing doubly-linked
data structures. All of these strong connectedness
calculations are performed using a simplified vari-
ant of Kosaraju’s algorithm for finding strongly
connected components; in particular, we need only
pick a given node n and check, via depth-first
search, that every node is accessible from n via the
original chains, and that every node is accesible
from n when the direction of every edge in the
chains are reversed.

Overall 3 Overall 7

Offset-wise? 3 Circular list N/A
Offset-wise? 7 Linear list Binary tree

TABLE III: Various types of doubly-linked data
structures, classified by overall strong connected-
ness and offset-wise strong connectedness.

IV. IMPLEMENTATION

We have developed an open-source imple-
mentation of MEMERY, available on GitHub at
tothepowerofn/memery. In this section, we
discuss relevant details of our implementation,
with particular focus on how we simulated the
vulnerabilities we assumed in Section II.

We developed a variety of test-cases represent-
ing linked lists that were singly and doubly linked,
and linear and circular; for robustness, we tested
where nodes were allocated in random or linear
orders, and with random gaps between nodes. We
also tested trees, in particular “parent trees” where
each child only stores a parent pointer, as well
as standard binary trees where each parent stores
pointers to each of its two children. All tests were
successful (up to the limitations in double-link
detection described in V).

The interaction of the actual MEMERY engine
with the victim program was simulated via a
network interaction; the use of a simulated exploit-
via-socket mirrors the real-world possibility of
exploiting a webserver. The victim program listens
for incoming connections. Upon a connection with
MEMERY, the following steps take place:

1) The victim calls malloc(1) and transmits
the result to MEMERY, simulating the leak-
age of a heap address via heap feng shui or
a similar technique.

2) MEMERY queries the victim for the value
stored at a certain address p. The victim
checks that this is indeed an accessible
address5, and if so, it dereferences it and
returns the result to the server.

After using this vulnerability to leak the entire
contents of the “estimated heap” region, MEMERY
proceeds with the algorithms described above to
identify data structures, and then generates a user-
friendly report on its findings.

V. LIMITATIONS AND FUTURE WORK

One specific limitation of the above heuristics
for detecting multiply-linked data structures has
to do with the detection of out-of-order multiply-
linked data structures, which consist of nodes
whose memory addresses are not strictly increas-
ing or strictly decreasing when traversed in the
linked order. For instance, if the nodes in Table II
had occurred in the order (“World”, “!”, “There”,
“Hello”), the next pointer for the “World” node
with offset 1 would fail to generate a chain of
sufficient depth (since following the pointer and
adding 1 would lead to a NULL value in “!”);
therefore, the first chain would be created by fol-
lowing the previous pointer for “World” with offset
1 into “There” and then following the next pointers
for “There” and “World” to the null value in
“!”. This problem represents an inherent ambiguity
in the detection of doubly-linked data structures
(since the data could in fact form an out-of-order
singly-linked data structure); solving this problem
would necessitate implementing a sophisticated
branching and backtracking analysis, which might
significantly impair MEMERY’s memory usage and
runtime.

It is also not very difficult to design programs
to intentionally confuse or evade the watchful eye
of MEMERY. For instance, to implement a singly

5We employ the ingenious method described at this StackOver-
flow post for checking whether an address is readable in Linux: We
setup a dummy memory file and then attempt to write a single byte
from address p into the file. If the address is readable, the write
will succeed, while if it is unreadable, the call to write will fail
with error condition EFAULT.

https://github.com/tothepowerofn/memery
https://stackoverflow.com/questions/7134590/how-to-test-if-an-address-is-readable-in-linux-userspace-app
https://stackoverflow.com/questions/7134590/how-to-test-if-an-address-is-readable-in-linux-userspace-app

linked list, a clever program could store, in each
node, several slots for pointers. All these slots
would be null, except for a single slot, the index
of which would be randomly chosen and stored
per-node, storing the pointer. Using this index
to retrieve the pointer and advance to the next
node, the program would be able to implement
the semantic properties of a linked list (i.e. this
is a valid implementation of a “linked list API”);
however, the probability of chains of detectable
length existing is very low, and so MEMERY would
not be able to identify the data structure. Similarly,
an adversarial program could populate large mem-
ory regions with PUSH MOV SUB; MEMERY is
incapable of distinguishing such regions from true
function pointers that would be useful for reverse
engineering or further exploitation. While such
issues are concerning from a robustness standpoint,
it is a fundamental limitation that it is impossi-
ble for programs to truly reason about semantic
properties of arbitrary code, and we believe our
contribution is still meaningful and useful even in
the non-adversarial case.

One potentially fruitful area for future research
is in relaxing the assumption that we can per-
form arbitrary reads without causing segmentation
faults. Right now, MEMERY proceeds by attempt-
ing to leak the entire estimated heap region; how-
ever, if the heap estimate is too liberal (and it is
in the above design), an immediate segmentation
fault will ensure. (Furthermore, a segmentation
fault causes addresses to be re-randomized via
ASLR, which would force MEMERY to have to fig-
ure out how to leverage cross-execution, relative-
addressed-based learnings.) A more conservative
strategy would progressively expand the leaked
region while accessing pointers that look like they
could potentially be heap pointers; when it comes
to checking string and function pointers, perhaps
using probabilistic reasoning about regions that are
most often pointed to and would therefore be the
most valuable to access would be helpful.

Another area is to try and recognize more
sophisticated layouts of individual nodes within
a structure. Currently, MEMERY is mostly suited
towards recognizing linked data structures built
from C structs; it cannot recognize C++ objects,
including linked structures built using the C++

Standard Template Library (STL). We believe that
it would not be difficult to adapt our algorithm
to, for instance, specifically search for and parse
virtual table pointers (used to back C++ objects).

VI. CONCLUSIONS
In conclusion, MEMERY provides useful black-

box analysis of heap memory and the data struc-
tures contained within it using only a memory
read vulnerability in an NX- and ASLR-protected
executable. It implements heuristics for the de-
tection of singly-linked and multiply-linked data
structures, and can identify function pointers and
other types of useful data. We have successfully
run MEMERY in a simulated, socket-based envi-
ronment and demonstrated its ability to detect and
distinguish linked data structures. We recognize
the current limitations of MEMERY and hope to
improve its robustness and expand its repertoire of
data structure recognition in the future.

REFERENCES

[1] R. Rogowski, M. Morton, F. Li, F. Monrose, K. Z. Snow, and
M. Polychronakis, “Revisiting Browser Security in the Mod-
ern Era: New Data-Only Attacks and Defenses,” 2017 IEEE
European Symposium on Security and Privacy (EuroS&P),
2017.

[2] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering
of data structures from binary execution,” InProceedings of
the 11th Annual Information Security Symposium, 2010.

[3] A. Slowinska, T. Stancescu, and H. Bos, “Howard: a Dynamic
Excavator for Reverse Engineering Data Structures,” NDSS,
2011.

[4] M. N. Gagnon, S. Taylor and A. K. Ghosh, “Software Protec-
tion through Anti-Debugging,” in IEEE Security & Privacy,
vol. 5, no. 3, pp. 82-84, May-June 2007.

	Introduction
	Memery
	Design
	Definitions
	Specification
	Singly-Linked Data Structure Algorithm
	Classifying Node Contents
	Detecting Function Pointers
	Detecting String Pointers

	Multiply-Linked Data Structure Algorithm
	Invariants

	Implementation
	Limitations and Future Work
	CONCLUSIONS
	References

