Improving Application Crash Consistency with
Symbolic Execution and Fuzzing

Madeleine Barowsky, Milan Bhandari, and Mridu Nanda

1 Abstract

Data loss and corruption after a crash is a pernicious and
often undetected problem. Prior work in finding crash con-
sistency bugs exercises a system with idiomatic usage of the
API and commands that fully succeed. We hypothesize that
error handling paths and unexpectedly ordered commands
have been under-explored for crash consistency vulnerabili-
ties. We use a grammar-based fuzzer and symbolic execution
with KLEE to search for diverse bugs missed by standard
workloads. We evaluate our hypothesis on three applications:
Git and two intentionally vulnerable simple utilities (copy
and sort). We find that automatically generated workloads,
combined with the crash consistency bug finder ALICE [10],
perform well at finding vulnerabilities in each application.
In particular, our custom grammar-based fuzzer finds more
vulnerabilities than both KLEE and hand-crafted baseline
developer workloads. Our success with finding bugs via a
fuzzer emphasizes the importance of unusual API usage as a
source crash consistency bugs. Our results also suggest that
some tools are better suited than others at generating work-
loads depending on the type of applications. We advance
the study of application crash-consistency bug finding by a
novel approach to workload generation.

2 Introduction

When a device loses power, any information that has not
been saved to persistent memory is immediately lost. After
power is restored, the operating system and applications
face the task of recovering internal state so they can run as
seamlessly and similarly as possible to a point prior to the
crash. At best, inconsistency can be repaired without user
intervention, even if some data from immediately before the
crash was lost. At worst, files or configuration may be deeply
corrupted, perhaps even invisibly. This is caused when devel-
opers do not properly account for the atomicity and ordering
guarantees of the underlying file system and disk. Such bugs
are ideally fixed before the software is deployed, but they
can be difficult to detect.

File systems use a variety of well-studied techniques to
provide crash consistency for content and metadata. Some
of these techniques include logging, copy-on-write, and soft
updates. Many modern applications are built atop these file
systems, and therefore get file-system-level crash consis-
tency guarantees for free. However, an application must
initiate its own application-level crash consistency protocol
to ensure that user-level data structures are consistent post-
crash. This sequence, known as an update protocol, invokes

system calls that update the underlying files and directories
in a recoverable way. For example, the default setting of
SQLite uses an update protocol called rollback journaling to
maintain transactional atomicity.

Unfortunately, applications often implement update pro-
tocols incorrectly. Incorrect update protocols are primarily a
result of a mismatch of expectations: the application devel-
oper falsely assumes certain invariants about the underlying
file system, causing the update protocol to behave in an un-
expected manner. For example, an update protocol might
assume writes are persisted in program order; however, most
modern file systems re-order writes to avoid high latency
seek times. The multitude of possible application states and
the non-deterministic nature of application state post-crash
makes it even more difficult to write a complete and correct
update protocol.

Finding crash consistency bugs has been an active area of
research for many years. Methods typically fall into one of
two categories: formal verification, or the record-and-replay
approach. While formal verification is exhaustive, it is often
burdensome to instrument and run. In contrast the record-
and-replay approach relies on heuristics, while still being
able to uncover flaws in heavily used code.

At ahigh-level, the record-and-replay approach consists of
three components: (1) an application’s workload, (2) known
good application state, and (3) a procedure to verify crash
consistency. The record-and-replay tool will simulate the
application’s workload until an arbitrary point, which repre-
sents a crash. Then the tool tries to determine whether the
application can recover to a known good state or whether it
is left in an irreparable corrupted state. The procedure to ver-
ify crash-consistency varies based on the tool. For example,
some tools use the application’s update protocol [10], while
others define a metric that captures the difference between
the application’s crash state and the application’s known
good state [4].

Most variants of record-and-replay tools require the ap-
plication developer to provide the workload. As a result, the
workloads are over simplified, and often trivial. Therefore,
we hypothesize that record-and-replay tools are fundamen-
tally limited by the diversity of application workloads. We
predict that record-and-replay tools will be able to find a
greater number of application-level crash consistency bugs
if given a diverse and robust application workload.

In this project we generate high-coverage application
workloads using fuzzing and symbolic execution. Fuzzing
involves generating a set of random inputs for a program and

running the program with those random inputs to observe
program crashes or misbehavior until some time budget is
exhausted. The fuzzing technique is advantageous because
it automatically generates test cases and does not require
access to source code. Furthermore, fuzzing does not require
control of the entire execution environment. For example, a
program does not have to be run atop a special hypervisor,
OS, or interpreter to be fuzzed [7].

Instead of running the code on randomly constructed in-
puts, as done in fuzzing, symbolic execution runs the pro-
gram with symbolic values. These values replace the con-
crete inputs to the program, and are manipulated by the
program’s logic. For example, if a program has an if clause,
the symbolic executor will maintain a set of constraints that
capture the symbolic values for both branches. When a path
terminates or hits a bug, the symbolic executor generates a
test case by solving the current path condition for concrete
values.

We predict that diverse application workloads will play
a critical role in drawing conclusions from the results of
crash-consistency tools. In particular, these results may cast
new insight on determining the crash consistency of a file
system. These results may also help application developers
write more robust, crash consistent applications, that are
independent of the underlying file system. The rest of the
paper is structured as follows. In Section 3, we recap related
work, including existing crash consistency bug-finders, and
high-test coverage techniques. In Section 4 we describe the
architecture of our system, followed by details of the design
in Section 5. Then, in Section 6 we give a brief overview of
the implementation of our system. We present our evaluation
and discussion in Sections 7 and 8. Finally, we conclude in
Section 9.

3 Related Work

In this section we give an overview of existing crash-consistency

bug finders and tools to generate high test coverage.

3.1 Crash-Consistency Bug Finders

Crash-consistency bug finders fall largely into two cate-
gories, formal verification and record-and-replay. Formal
verification methods for crash consistency provide concrete
guarantees under certain assumptions, but can be costly to
implement. In contrast, the record-and-replay paradigm re-
lies more on heuristics. As a high level, this model requires
a user to define a workload of commands to exercise the
system and, in some cases, a script to check the state after a
real or simulated crash to determine whether the program
state is consistent.

3.1.1 EXPLODE. An early work in this space, EXPLODE
(2006), adapts model checking to find filesystem crash con-
sistency vulnerabilities. EXPLODE exhaustively explores all

crash states but needs the user to enumerate each consis-
tency property and ways in which it might be tested by the
application API It also runs on a live kernel, thus requiring
a VM [14].

The state exploration loop of EXPLODE, placed atop the
stubbed out methods for each storage system layer, has a
flavor of symbolic execution. This is unsurprising as one of
the authors later co-created KLEE, a symbolic executor we
discuss later.

3.1.2 Torturing Databases. A 2014 paper by Zheng et al.
modifies a iSCSI driver to record disk I/O, simulates crashes,
and attempts to restart the application on the resulting image
[16]. They hand-design five workload and checker scripts
that are tailored to their understanding of database weak
points. This work effectively stresses database applications
and provides trustworthy evidence and root cause for any
resulting bugs; however, it is limited to database applications
and requires significant programmer effort to port to new
use cases or filesystems.

3.1.3 ALICE. One of the first general application-level
crash consistency bug finders was introduced in 2014 by
Pillai et al. [10]. Their system, ALICE, falls under the record-
and-replay regime and requires that someone familiar with
the application semantics write workload and checker scripts.
ALICE has been successfully used in industry to find real
crash consistency bugs [11]. For each filesystem they wish
to test, the user must also implement an abstract persis-
tent model (APM). During execution of the workload script,
ALICE records a trace of the program’s system calls and
parses them into intermediate micro-operations and then,
disk operations. Using the constrains defined by the APM,
ALICE explores achievable crash states at various points in
workload execution and checks for inconsistency with the
user-supplied checker script. It is not feasible for ALICE to
simulate all possible crash states, but a user can provide some
direction for the granularity and depth of exploration.

ALICE reports discovered vulnerabilities as either dy-
namic or static:

e A dynamic vulnerability is a system call that results
in an inconsistency. ALICE finds dynamic vulnerabili-
ties by incrementally simulating each system call, and
running the outputted state through the user-defined
application checker.

e A static vulnerability is a source code line that results
in an inconsistency. Multiple dynamic vulnerabilities
can correspond to a single static vulnerability, e.g. if
they originated from the same line that was executed
multiple times.

Note that the utility of ALICE relies on the correctness
and thoroughness of the user-supplied scripts. The workload
must exercise many code paths in the application and the
checker script must understand which filesystem states after

a crash are recoverable. We believe that the need for hand-
written workload and checker scripts is a major limitation
of ALICE in its current state and attempt to address the task
of automatic workload generation.

3.1.4 C3. The 2016 paper “Crash Consistency Validation
Made Easy” from Jiang et al. shared our goal of further au-
tomating record-and-replay tools. Instead of artificial work-
loads developed for the purpose of exercising the program,
this work proposes test amplification to leverage existing
functional tests for the software. To expose faulty developer
assumptions, test amplification runs tests and inserts sync
points after certain system calls whose consistency prop-
erties may have been misunderstood (e.g., ftruncate and
open). These sync calls are benign during execution but offer
a variety of snapshots of application state after a simulated
crash. For automated checking, C* uses (estimated) edit dis-
tance as a proxy for whether the crash state is “close enough”
to a consistent state as to be recoverable.

To our knowledge, C® is the first approach towards au-
tomating both parts of the pipeline. However, the test ampli-
fication process may not find bugs that are related to long
chains of system calls or other ways in which an application
might be stressed (heavy workload or unusual API usage).
Although C? reports finding fourteen bugs, upon investigat-
ing further, we found that only about five were considered
real and fixable bugs; the others mostly resulted in updated
documentation or were closed as being too theoretical and
unlikely to occur in practice. Thus, we are skeptical that
test amplification is as effective as promised. Because C* is
modular, our contribution of more complex workloads can
be evaluated under their crash simulation and automatic
checking.

3.1.5 CrashMonkey. Another automated record-and-replay
tool came in 2018 with a system called CrashMonkey [8].
Tasked with generating scripts to test file system consistency,
CrashMonkey uses heuristic bounds on length, parameters,
and depth to generate workload code. Although they note
that “there seem to be no fuzzing techniques to expose crash-
consistency bugs,” the approach they developed of combining
random system calls and inserting necessary dependencies
is essentially a fuzzer.

After replaying recorded I/O calls and truncating at a
persistence point to simulate a crash, the program attempts
to mount the resulting disk image. If successful, and if all
files from the workload can be properly read and written,
CrashMonkey considers the state to be consistent.

We are heavily inspired by the workload fuzzer from
CrashMonkey and borrow it to generate application-level
workloads. This requires additional insights and customiza-
tion because dependencies and proper API usage are specific
to each application.

3.2 Diverse Workloads

There are many existing automated testing frameworks that
help ensure the correctness of code. These testing tools come
in three flavors: linting, fuzzing, and symbolic execution.
The primary goal of these frameworks is to create a set of
test cases with high code coverage, so that almost all of
a program’s execution paths are tested. Linting is a static
analysis technique that involves inspecting source code for
common bugs and stylistic errors. For example, a linter might
detect an uninitialized variable [7]. However, linting is not
used to find more complex logic bugs, so we will not utilize
this technique in our project. Instead, we harness fuzzing
and symbolic execution to generate high-coverage, diverse
test cases that uncover application-level crash consistency
bugs. For the former, we create our own grammar-based
fuzzer. For the latter, we will make use of KLEE.

3.3 Grammar-Based Fuzzer

The basic idea behind a fuzzer is to generate random inputs
for a program, and to observe program behavior after run-
ning on these random inputs. Often, random input exposes
weaknesses in error handling or parsing and the program
will throw an exception or display incorrect output. Fuzzers
are advantageous because (1) they automatically generate
test cases, (2) they do not require the developer to control the
entire execution environment, and (3) they do not require
a special hypervisor, OS, or interpreter [7]. Unfortunately,
truly random fuzzing will have poor code coverage since
most programs expect input in a certain order and format
and fail quickly if these constraints are not satisfied. For ex-
ample, arbitrary strings created to fuzz a web server will very
rarely correspond to valid HTTP requests. Furthermore, ran-
domly generating inputs can result in repeatedly exploring
the same code paths, leaving other paths unexplored.

Syntax-aware fuzzers can help increase code coverage.
This class of fuzzers utilizes application-specific knowledge
to generate realistic commands that exercise the application
sufficiently. A syntax-aware fuzzing engine can be driven by
either input templates or input grammars [7]. In this project,
we utilize a grammar to generate application workloads.

In general, a grammar defines the structure of the language
and describes how to iteratively construct valid statements.
It consists of a start symbol, nonterminal symbols, terminal
symbols, and rules mapping nonterminals onto other sym-
bols. A terminal symbol cannot be further expanded,; it can be
thought of as a concrete value. A nonterminal symbol is an
intermediate state within an expression and must eventually
be expanded into terminal symbols.

There are many types of grammars for both natural and
artificial languages. For example, the Backus-Naur Form
(BNF) grammar for arithmetic expressions looks like [3]:

e == x|nle; + es]e; X ex]x :=eq; es

where e, e;, and e, are expressions, n is an integer, and x
is a variable. The BNF grammar concisely gives a recursive
definition of simple mathematical statements using only a
few terms. A valid expression expansion of the above gram-
mar could look like: 1 + 2 X 3 + x. Of course, the order of
operations in the above grammar is ambiguous. One way to
solve this is to modify the grammar by including parenthesis.

We use a BNF grammar for our grammar-based fuzzer as
described in Section 5.

3.4 KLEE

In contrast to fuzzing, symbolic execution is a more exhaus-
tive test generation technique. In symbolic execution, all
concrete program inputs are replaced with symbolic values.
As the program runs, the symbolic executor accumulates a
set of constraints that manipulate the symbolic values, and
represent the various execution paths of the program. Once
the program terminates, the symbolic executor "solves" the
constraints to concretize the program inputs and generate a
test case.

KLEE is one example of a symbolic execution engine. At a
high level, KLEE functions as a hybrid between an operating
system for symbolic processes and an interpreter [2]. KLEE
refers tot eh representation of the symbolic process a state.
KLEE compiles an application’s source code to LLVM, which
is a high-level assembly language. As the program executes,
KLEE instruments the LLVM bytecode to add constraints.
For example, to instrument the LLVM add instruction

%dst = add 132 %src@, %srcl

KLEE will retrieve the addends from the %src@ and %src1,
and write a new expression Add (%src@, %src1) to the %dst
register.

Unfortunately, even a simple program can generate thou-
sands of concurrent states. To ensure an efficient symbolic
execution engine, KLEE includes optimizations to compactly
represent states and to efficiently complete queries. For exam-
ple, to reduce per-state memory requirements, KLEE imple-
ments copy-on-write on an object-level granularity, instead
of using the traditional page-level granularity [2]. An exam-
ple of a query optimization includes implied value concretiza-
tion. This optimization decreases the number of constraints
that KLEE must solve for by substituting a constant for the
symbolic value, whenever the constant value can be inferred.
For example, KLEE will omit a constraint suchasx + 1 = 10,
since it can instead store the concrete value of x (in this case,
x =9). Users can also limit the number of states that KLEE
explores by setting a time limit for KLEE’s exploration, or
by setting the —only-output-states-covering-new flag.
This flag ensures that KLEE only generates test cases that
cover distinct parts of code.

In order to test real-world programs, KLEE enables users to
pass in symbolic arguments and files with the -sym-arg and
-sym-files flags, respectively. Using these building blocks,

previous work showed that KLEE successfully generated
in-depth coverage all 89 for COREUTILS utilities [2].

4 Architecture

In this section we give a high-level overview of our archi-
tecture. We hypothesized that increased workload diversity
would result in crash-consistency bugs missed by standard
workloads. We classify diversity by three metrics: code cov-
erage, length of commands, and exploring error handling
paths/unexpected API usage. To this end, our architecture is
comprised of three main components:

o Applications: We aim to find crash-consistency bugs
in these programs. We will use open source programs,
like Git, and hand-rolled programs like copy and sort.
Workload generators: We will use three techniques for
generating workloads. The baseline comparison will be
a handwritten workload, written by an average devel-
oper. We will compare the bugs found in this workload
against workloads generated by KLEE, and by our cus-
tom grammar-based fuzzer. We chose KLEE because ex-
tensive previous work has shown that this tool can suc-
cessfully generate high coverage tests for applications.

We chose to make a custom grammar-based fuzzer

because this technique enabled easy stress-testing for

unexpected API usage. The fuzzer also allowed us to
test the effect of chaining commands together, and

allowed us to test complex open source programs (e.g.,

Git), which were difficult to instrument in KLEE. We

describe the KLEE implementation challenges in 6.

e Crash Consistency tools: We will feed the generated
workloads into record-and-replay crash consistency
bug finders. In this paper, we focus on the ALICE tool;
however, we believe that these results could be repli-
cated on different modular crash-consistency bug find-
ing tools, like C3.

5 Design

We designed several components of the architecture from
scratch. In particular, we designed hand-rolled applications
and the grammar-based fuzzer. In the following sections, we
give the design details for both.

5.1 Hand-rolled Applications

We hypothesized that more diverse workloads would result
in a greater number of application-level crash consistency
bugs. A key challenge in testing this hypothesis involved
picking the right set of applications to generate workloads
for. We found that "real world" applications, like Git, can
be difficult to instrument with KLEE (as described in Sec-
tion 6). Therefore, to provide a fair comparison among all
our workload generation techniques, we wrote hand-rolled
applications.

—

Hand-rolled Copy ‘l
Hand-rolled Sort J

Git

KLEE

Grammar-based

r ALICE
Fuzzer

Average
Developer

)

Applications Workload Generator Crash Consistency Tools

Figure 1. The workflow for our experiments. We test three
applications: a hand-rolled copy program, a hand-rolled sort
program, and Git. We generate workloads three ways: with
KLEE, with the custom grammar-based fuzzer, and with
an average developer. The fuzzer and devleoper generate
workloads for all three programs; however, KLEE only gen-
erates workloads for the hand-rolled programs. We describe
the implementation difficulties for KLEE instrumentation in
Section 6. Finally, all workloads are input to ALICE, which
produces crash consistency bugs.

We created two hand-rolled applications as a proof of con-
cept: copy and sort. Each program includes a trapdoor, which
if triggered, will result in a crash consistency bug. It would be
difficult for an average developer to find such trapdoors be-
cause they are omitted from the program’s documentation.
However, we hope that the high coverage, diverse work-
loads generated by KLEE and the fuzzer, will exercise the
application enough to reveal the crash inconsistencies. We
give details about each of these applications in the following
sections.

5.1.1 Copy. The copy program we wrote has a similar API
to GNU Coreutil’s cp. At a high level, the implementation
will read N bytes from the input file into a buffer and write
those bytes into the output file. After each write, the program
will call sync the output file and print the number of bytes
written. This routine runs in a loop until the entire input file
has been copied. Thus, our copy guarantees that if the user
sees a number x printed to the console, at least x bytes from
the input file have been copied to the output. However, given
certain byte sequences in the input file, our copy program
will miss a call to sync. This breaks the above agreement
where at least x bytes might not be in the output file.

While clearly a contrived example, motivation for this
program came from KLEE'’s symbolic execution guarantees
to generate test cases that explore all possible code-paths in
a program; given regular testing, one might not encounter
such a bug.

The hand-written checker script for copy codifies these
properties. It will read the number of bytes the program says
were copied until the crash from stdout and assert that the

output file is at least x bytes long, and that the first x bytes
of the output file match the input file.

5.1.2 Sort. We used inspiration from [4] while writing this
program. Our sort program takes in one or two files as input.
If only one file is passed as input, then sort does the sort
in-place. Otherwise, the second file contains the results of
the sort operation. At a high-level, sort converts the input
file into a stream, and breaks the input text into lines. Then
the program sorts the lines file’s lines in in non-descending
order. Finally sort writes the sorted output to a file.

The key behind sort’s trapdoor is parsing files as streams.
By converting the input file to a stream, the file is truncated
to empty. A crash at this point would would result in the files
contents being lost permanently. The sort checker script
verifies if the application is recoverable by checking that the
lines in the output are written in sorted order. If the sort
program was provided the same input and output file, then
sort also asserts that no data was lost.

5.2 Grammar-Based Fuzzer

For each of the applications we evaluate, the grammar is
slightly different. At a high-level, they look like

GRAMMAR = {
"<start>": ["<program>"],

"<program>": ["<command>;", "<command>; <program>"],

"<command>": # see below,

"<name>": ["<letter>", "<letter><name>"],

"<file>": # see below,

"<number>": ["<digit>", "<digit><number>"]
}
Note that we construct programs, numbers, and names (i.e.,
alphanumeric strings) recursively. The maximum number of
nonterminals that we expand can be optionally specified but
defaults to 100. We use the simple_grammar_fuzzer from
[15] for the actual expansion.

5.2.1 <command>. Each <command> nonterminal corresponds
to a single command given to a program. Thus, we must de-
scribe valid ways to use the API. We wrote a parser that takes
docstrings for the program (in the format of output from
—-help or the like) and converts them into commands for
the grammar. Our parser understands positional, optional,
and mutually exclusive switches and exhaustively chooses
combinations thereof. As an example, parsing the string

git reset [-q] [<commit>] [--] <name>
yields the following list

["git reset <name>",

"git reset -- <name>",

git reset <commit> <name>",
git reset <commit> -- <name>",
git reset -q <name>",

git reset -q -- <name>",

git reset -q <commit> <name>",

n

n

"git reset -q <commit> -- <name>"].

Our hand-rolled sort and copy programs have simple APIs:
each takes in an existing filename and a second string which
may or may not be an existing filename, e.g., sort <file>
<name> and sort <file> <file>.

For git commands, we must employ more involved strate-
gies. Although we did not specify the entire git API, we also
included some additional options (via nonterminals) and,
when the fuzzer is run in an existing git repository, added all
previous commit hashes to the <commit> nonterminal. We
were then also able to add relative commit pointers such as
HEAD*n for each of the n previous commits.

5.2.2 <file>. It was important for each of our applica-
tions that some real input files existed and had nonempty
contents. As part of the grammar-based fuzzer, we created
a random number of files with random filenames and con-
tents. The names of these inputs could be included in the
<file> nonterminal. We also added the absolute and rela-
tive filenames for all files recursively found in the directory
from which the fuzzer was run. Including both absolute and
relative paths was a strategy to improve code coverage and
expose application bugs.

6 Implementation

To best compare with the results from ALICE, we used git
1.9.2 [1] because it came out earlier in the same year the
ALICE paper was published. This required compiling git
from source and linking against OpenSSL 1.0.1g [12] and zlib
1.2.8 [5]. Our test programs use a library called argparse,
which requires g++> 8.0.

For the KLEE work, we initially used the provided KLEE
Docker container. However, this container came with a ver-
sion of the KLEE binaries that compiled to use LLVM 6, and
with different compilation flags than what we required for
our usage. Thus, we had to build KLEE to work with LLVM
9.

We used the tests generated by KLEE as our workload
scripts to be run by ALICE. Running the klee tool creates
a directory with an encoded version of the generated tests.
We used the klee-replay tool to then generate temporary
directories containing the materialized versions of the files
we need, as well as the invocation of the test command.
We then created a python script that creates a vulnerability
report by running ALICE on all of the generated tests. We
used an Ubuntu 20.04 Docker container running on a quad-
core machine with 16GB of memory for these tests.

For ALICE and fuzzing, we used an Ubuntu 18.04 AWS
t2.micro instance. We checked consistency against the de-
fault APM (the least constrained filesystem which is allowed
to reorder arbitrarily between sync calls) and APMs for CCFS
and ext4-ordered implemented by two of the authors in [9].

Unless otherwise specified, we discuss the reported vulner-
abilities by the default APM. This is what was done in the
original ALICE paper.

Our checker scripts for copy and sort were already de-
scribed in Section 5.1. Because the git consistency checker
used in the original ALICE work was not available online,
we had to reimplement our own, albeit much simplified.
The original ALICE authors wrote a checker script that was
approximately 500 lines of code and invoked “all recovery
procedures [the authors] were aware of” [10, Sec 4.1]. In con-
trast, our checker script simply removes a . lock file (which
might be generated during a crash), runs git fsck -full,
and attempts to perform a few standard git operations like
status, add, and commit to ensure the repository is working
as intended.

All our harness, workload, checker, and grammar-based
fuzzer scripts are made open source [6]. Available also are
the reports from ALICE, the KLEE test cases, and necessary
initial workload directories for reproducing the given ALICE
output.

7 Evaluation

In general, we found that ALICE reported the most static
vulnerabilities when run on workloads generated by the
fuzzer, followed by KLEE, followed by the developer. After
some investigation, we believe the fuzzer produced the most
bugs because (1) it was able to create tests that involved
large files, (2) it was able to create slightly malformed inputs,
which stress tested the program’s error handling, and (3) it
was able to chain multiple smaller commands, which could
expose procedures that fail to properly persist output upon
completion (instead relying on other layers of the system).

Developer KLEE Fuzzer
Copy 0 1S,1D 6S, 11D
Sort 0 1S,2D 3S,3D
Git 9S, 10D NA 10S, 13D

Table 1. Number of static (S) and dynamic (D) vulnerabilities
found by ALICE per each program per each workload gener-
ation tool. All workloads were run atop the default APM.

Our developer workloads were very simple, executing
a couple commands on short files without unusual bytes.
We believe these are representative of an end user’s poten-
tial misunderstanding of the ALICE tool. Because ALICE’s
exploration of potential crash states is similar to fuzzing,
a programmer might not introduce sufficient randomness
or bulk into their workloads to uncover crash consistency
vulnerabilities.

7.1 Copy

The developer generated workload did not result in any vul-
nerabilities produced by ALICE. This result is reasonable;

the developer’s file did not contain the magic byte sequence,
which would cause the program to miss a sync call. In con-
trast, the workload generated by KLEE reported exactly one
static vulnerability. This vulnerability corresponded to the
file that contained the malicious byte sequence. In particular
the output generated by ALICE, when run on this workload
looked like:

Logical operations:

@ creat("out", parent=31717, mode='0600",
inode=31719)

1 append("out", offset=0, count=5, inode=31719)

2 stdout("'\nA,out:5,'")

(Dynamic vulnerability) Ordering: Operation 1
needs to be persisted before 2

(Static vulnerability) Ordering: Operation
copy.cpp:44[main(int, char*x)] needed before
B-/home/ubuntu/mset-alice/test-programs/bin/copy
:0x4010de[_start]

After re-compiling with debugging flags, we confirmed that
the reported static vulnerability corresponds with the re-
ported dynamic vulnerability. The ALICE tool correctly finds
that the file append should be persisted before it is written
to standard out.

The workload generated by the fuzzer had the most vulner-
abilities. However, ALICE’s output was somewhat confusing,.
In particular, ALICE outputted several variants of this static
vulnerability:

(Static vulnerability) Ordering: Operation
B-/home/ubuntu/alice/example/test/test-programs/
bin/copy:0x5623299027cal_start] needed before
B-/home/ubuntu/alice/example/test/test-programs/
bin/copy:0x560faeeel7cal_start]

This vulnerability was confusing because the _start func-
tion is the entry point of a C program which makes a call to
main() [13]. None of our scripts should be able to modify this
code. We verified this hypothesis by looking at the disassem-
bled the binary copy file; the start code dissembled output
only showed that _start made a call to main, without any
other mention of our specific scripts.

In contrast, the dynamic vulnerabilities produced by AL-
ICE running on the fuzzer workloads, were more understand-
able. Multiple dynamic dynamic vulnerabilities correspond
to a single static vulnerability; therefore the number of dy-
namic vulnerabilities reported in Table 1 is an overestimate
of the true number of bugs. Regardless, the dynamic vulner-
abilities still give some insight into the crash consistency
behavior of the application. In particular, the dynamic vul-
nerabilities report that the series of sort commands must
be persisted in a particular order. This finding is interesting
because these dynamic vulnerabilities disappear if each in-
dividual sort command in the chained workload is run as
an individual workload on ALICE. Therefore, we conclude

that short commands that are chained together in the fuzzer
help discover a greater number of application-level crash
consistency bugs.

7.2 Sort

Sort, on the other-hand, will generate crash-consistency
warnings for any workload that tries to sort a file in-place
while using the default APM. Specifically, the vulnerabil-
ity discovered to be very similar to the one described in [4],
where a file that is sorted in place will be truncated before the
results are written. If a crash happens just after this truncate,
the contents of the original file are lost.

As indicated by [4], certain versions of ext4 may perform
small-file overwrites atomically, even if not specified in the
file-system guarantees. ALICE, assuming a correct specified
APM, would capture these vulnerabilities even with small
files. Since ALICE relies on replaying operations following
the constraints of a file system model rather than intercepting
actual block-level operations such as C3, it is not constrained
to the choices of a particular implementation.

In our developer-written workload scripts, we assumed
the output files would be different from the inputs. Thus,
ALICE found no vulnerabilities.

In order to generate test cases for sort via KLEE, we made
use of symbolic files and arguments. Overall the results from
ALICE determined that the append operation to the output
file (which in this case is the truncated input file) must be
persisted before we write the results to the console. This
condition arises when the input file is equal to the output
file because our checker asserts that the original file must be
present, either in the original state or the sorted state, at any
crash point. This condition is relaxed when the output file is
different from the input file because there is no potential for
data-loss when this is the case.

The fuzzed scripts reliably produce workloads that sort
the same file in place. While ALICE outputted a slightly
different number of static and dynamic vulnerabilities in
comparison to KLEE, we believe that these actually are the
same bugs. In particular, the bugs involve durability and
ordering, which were the same bugs generated in the KLEE
workload. Unfortunately, the durability related bug involved
some arcane C++ code, which we did not have enough time
to dig into.

7.3 Git

Git is a piece of popular version-control software that stores
its history in a tree and metadata about the repository in a log,.
Much of open source software development happens in git
repositories, and it is important for historical and functional
purposes that these repositories do not silently lose data or
become corrupted. Because of the importance and ubiquity
of git, and because both ALICE and C3 tested their tools on
git, we chose to evaluate on it as well.

We were unable to successfully use KLEE to generate
git workloads because of the complexity of git’s input re-
quirements and codebase. Instead, we focused our efforts on
grammar-based fuzzing (described in Section 5.2).

The original ALICE paper reported a total of 9 static crash
consistency bugs in git under the default APM [10, Table 3(a)].
These include things like git-log and git-commit being
unable to complete after a crash and more subtle errors like
unreachable references (which could be resolved by an ad-
vanced user). The ALICE authors state that git never intended
to provide crash guarantees and thus they did not report
the vulnerabilities to the developers. C3 reported none and,
noting the disparity with ALICE, described their trade-off
ease-of-use in place of effectiveness [4]. With our grammar-
based fuzzer that parses documentation strings, we attempt
to balance both.

Even our basic git workload with a single commit reports
multiple static and dynamic vulnerabilities. In Table 1, we
replicate the 9 unique static vulnerabilities found by ALICE
and find 10 unique dynamic vulnerabilities (the ALICE paper
did not report dynamic vulnerabilities). To arrive at these
counts, we considered only distinct pairs of start and end
functions (i.e. a reported bug in which an operation from one
function should occur before one in the other) and ignored
vulnerabilities originating in library code. We looked into
the git 1.9.2. source and attempted to determine whether
some of these vulnerabilities were legitimate or had been
fixed in the newest version of git, but both proved difficult
tasks.

For the fuzzed git workloads, we find slightly more static
and dynamic vulnerabilities. There is some overlap in re-
ported bugs, a strong signal that those lines should be inves-
tigated for critical flaws. All but one of the static vulnera-
bilities in the basic workload were also found by the fuzzed
workload. The remaining bug occurs during a commit, which
the fuzzed workload did not generate. The fuzzed workload
points to a number of possible bugs in wt-status.c and
create_symref, whereas the basic workload does not.

8 Discussion
8.1 KLEE

KLEE uses symbolic execution to generate tests cases that
explore all possible execution paths for a given program.
However, KLEE operates at the program instruction level.
This implies that KLEE will not be able to explore different
symbolic inputs that may result in different underlying disk
operation but flow through the same system-call. This is con-
cerning in the context of varying write sizes. Previous work
[10] has shown that file systems will guarantee different
atomicity semantics when dealing with writes of different
sizes. A further restriction of KLEE is that it requires the user
to specify the maximum file size of each symbolic file.

An extension of KLEE to better support file-system related
operations could include modeling the behavior of I/O related
system calls such that different ranges of file-sizes would
produce different execution paths.

9 Conclusion

We emphasize that unexpected API usage must not be over-
looked as a source of crash consistency bugs. Although the
application developer must understand how to use the pro-
gram under test in order to write a thorough workload, there
is significant value in including intentional errors, unusual
command ordering and options, and unnatural input bytes.
This work has shown the potential of grammar-based fuzzing
and symbolic execution for automatically finding application
crash consistency vulnerabilities. Grammar-based fuzzing
has particular utility for more complex programs, and sym-
bolic execution is best suited for environments with more
narrow scope and additional computation power. We evalu-
ated fuzzed workloads with ALICE on three applications and
were able to uncover more bugs than prior work. We eval-
uated KLEE-generated workloads on two proof-of-concept
binaries and found the vulnerabilities we expected. Our con-
tributions are both modular (to different crash consistency
tooling) and generalizable (to different programs) and we
hope the community will build upon them for use in practice.

References

[1] 2014. git. https://github.com/git/git/releases/tag/v1.9.2. Commit:
0Obc85ab.

[2] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. [n.d.]. Klee:
unassisted and automatic generation of high-coverage tests for com-
plex systems programs.

[3] Steve Chong. 2013. Intro to semantics; Small-step semantics: CS152
Lecture 1.

[4] Yanyan Jiang, Haicheng Chen, Feng Qin, Chang Xu, Xiaoxing Ma, and
Jian Lu. 2016. Crash Consistency Validation Made Easy. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (Seattle, WA, USA) (FSE 2016). Association for
Computing Machinery, New York, NY, USA, 133-143. https://doi.org/
10.1145/2950290.2950327

[5] Jean loup Gailly and Mark Adler. 2013. zlib. https://zlib.net/. Version
1.2.8.

[6] Mridu Nanda Madeleine Barowsky and Milan Bhandari. 2021. mset-
alice. https://github.com/madeleine-b/mset-alice/.

[7] James Mickens. 2020. Testing: CS263 Lecture 5.

[8] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,

and Vijay Chidambaram. 2018. Finding Crash-Consistency Bugs with

Bounded Black-Box Crash Testing. In 13th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 18). USENIX As-

sociation, Carlsbad, CA, 33-50. https://www.usenix.org/conference/

osdi18/presentation/mohan

Mridu Nanda and Milan Bhandari. 2021. Reproducing Crash Consis-

tency Experiments with ALICE. Unpublished.

[10] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2014. All File Systems Are Not Created
Equal: On the Complexity of Crafting Crash-Consistent Applications.
In Proceedings of the 11th USENIX Conference on Operating Systems

[9

—

https://github.com/git/git/releases/tag/v1.9.2
https://doi.org/10.1145/2950290.2950327
https://doi.org/10.1145/2950290.2950327
https://zlib.net/
https://github.com/madeleine-b/mset-alice/
https://www.usenix.org/conference/osdi18/presentation/mohan
https://www.usenix.org/conference/osdi18/presentation/mohan

Design and Implementation (Broomfield, CO) (OSDI’14). USENIX Asso-
ciation, USA, 433—-448.

Peter Stace. 2017. Making Badger Crash Resilient with ALICE. https:
//dgraph.io/blog/post/alice/.

The OpenSSL Project. 2014. OpenSSL. https://github.com/openssl/
openssl/releases/tag/OpenSSL_1_0_1g. Commit: b2d951e.

ulidtko. [n.d.]. https://stackoverflow.com/questions/15919356/c-
program-start.

[14] Junfeng Yang, Can Sar, and Dawson Engler. 2006. EXPLODE: A Light-

weight, General System for Finding Serious Storage System Errors.
In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (Seattle, Washington) (OSDI *06). USENIX Association,

USA, 131-146.

Andreas Zeller, Rahul Gopinath, Marcel Bbhme, Gordon Fraser, and
Christian Holler. 2019. Fuzzing with Grammars. In The Fuzzing Book.
Saarland University. https://www.fuzzingbook.org/html/Grammars.
html Retrieved 2019-12-21 16:38:57+01:00.

Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin, Mark Lillibridge,
Elizabeth S. Yang, Bill W Zhao, and Shashank Singh. 2014. Torturing
Databases for Fun and Profit. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 449-464. https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/zheng_mai

https://dgraph.io/blog/post/alice/
https://dgraph.io/blog/post/alice/
https://github.com/openssl/openssl/releases/tag/OpenSSL_1_0_1g
https://github.com/openssl/openssl/releases/tag/OpenSSL_1_0_1g
https://stackoverflow.com/questions/15919356/c-program-start
https://stackoverflow.com/questions/15919356/c-program-start
https://www.fuzzingbook.org/html/Grammars.html
https://www.fuzzingbook.org/html/Grammars.html
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_mai
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_mai

	1 Abstract
	2 Introduction
	3 Related Work
	3.1 Crash-Consistency Bug Finders
	3.2 Diverse Workloads
	3.3 Grammar-Based Fuzzer
	3.4 KLEE

	4 Architecture
	5 Design
	5.1 Hand-rolled Applications
	5.2 Grammar-Based Fuzzer

	6 Implementation
	7 Evaluation
	7.1 Copy
	7.2 Sort
	7.3 Git

	8 Discussion
	8.1 KLEE

	9 Conclusion
	References

