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Abstract
Modern systems place implicit trust in applications, by grant-
ing them the maximum possible access to system resources.
Existing mechanisms to enforce the principle of least privi-
lege (PoLP) are: (1) user-centric [18], (2) error-prone [6], and
(3) incompatible with traditional APIs [7, 19]. As a result,
desktop and server systems are plagued with over-privileged
applications that are susceptible to confused deputy attack
and malware. In this paper, we present XOS, a speculative
operating system that enforces the PoLP at the application-
level. XOS allows a process to access resources proportional
to the trustworthiness of the process. XOS uses inspiration
from human interactions to quantify trust: just like a depend-
able friend is more trustworthy than an erratic friend, XOS
trusts a process that behaves in an expected manner more
than a process that behaves in an unpredictable manner. By
making trust explicit, XOS encourages developers to write
security-conscious applications and limits potential damage
from insecure applications.

1 Introduction
Applications running on commodity operating systems get
access to system resources by virtue of installation. For ex-
ample, a Microsoft Word application gets de facto access to
memory, disk space, display, and CPU time upon installation.
Granting applications unvetted access to system resources
violates the principle of least privilege (PoLP), which asserts
that an application should use the minimal set of resources
needed to perform its task [17]. Consequently, desktop and
server systems are plagued with over-privileged applications
that are susceptible to confused deputy attacks and malware.
Discretionary access controls (DACs) limit how applica-

tions can use system resources. The DAC model allows a
principal, like a user, to specify an access control list (ACL)
for an object she created, like a file [18]. When a user installs
an application, the application’s processes are bound to the
user’s ID. Therefore, the application’s processes can only
access system resources with an ACL that mentions the user.
For example, if Alice installs a Microsoft Word application,
the corresponding processes can only manipulate resources
with an ACL that mentions Alice.

Unfortunately, DACs do not support the PoLP:
• DACs do not set permissions for all system resources.
While DACs traditionally limit file access, DACs do not
restrict access to other system resources, like memory
or CPU time.

• DACs are often configured incorrectly. Configuring per-
missions is a painful task, and DACs place this burden
on the end-user. Users often grant more permissions

than strictly necessary, resulting in over-privileged
applications [14].

• DACs assign trust to users, not processes. However, by
trusting users, DACs also implicitly trust the appli-
cations that users install [6]. This clearly a problem,
since a DAC cannot prevent a user from installing an
insecure application. Thus, a malicious process may
be granted unfettered access to system resources.

As a result, systems under the DAC model often give appli-
cations far more trust than is strictly necessary.

Given the explosion of technical education [10, 13], users
are mostly able to avoid installing malicious applications.
Unfortunately, it is still common for users to install well-
intentioned, insecure applications. Therefore, we require
new security primitives that limit the damage an insecure
application can inflict upon the operating system. The oper-
ating system is the best place to explore such abstractions
because it provides fine-grain control over system resources.
Furthermore, operating system-based access controls can
assign trust to processes directly. Such a system is not sus-
ceptible to a lazy sysadmin, who grants users unnecessary
access to sensitive resources.
In this paper, we present XOS, a speculative operating

system that provides strong access control guarantees. XOS
limits the carnage from exploiting an insecure application
by granting processes access to system resources on a least
privilege basis. In particular, XOS assigns each process a
trust value, which determines which system resources the
process can access. A process with a high trust value will be
allowed to use more system resources than a process with a
low trust value. For example, XOS will schedule a process
with a high trust value more frequently than a process with a
low trust value. By making trust explicit, XOS aims to secure
the operating system environment.
XOS uses inspiration from human behavior to quantify

trust. While typical systems use binary values of trust, XOS
takes a more natural approach and considers a spectrum
of trust. Earning trust is difficult. At installation time, an
application must present XOS with a policy that declares all
the system resources it will access. XOS checks this policy
against some known good values, to determine a base trust
value for the application’s processes. During run-time, XOS’s
security monitor verifies that a process’s actions are consis-
tent with its policy. XOS rewards a process that behaves in
an expected manner by incrementing its trust value. Suspi-
cious behavior flagged by the security monitor can cause
XOS to decrement a process’s trust value. Processes with
higher trust values can vouch for processes with lower trust



values; however, if the vouchee violates the system’s trust,
XOS decrements both processes’ trust values.

The rest of this paper is organized as follows. In section
2, we explore previous attempts to enforce PoLP, and how
these approaches relate to XOS. Next, we give a high-level
overview of XOS’s design, which includes a policy engine
(Section 3.3), security monitor (Section 3.4), and ML engine
(Section 3.5). We conclude with a discussion of XOS’s limita-
tions and future work (Section 4).

2 Related Work
In this section we describe previous attempts to provide
systems-level support for the PoLP.

2.1 Mandatory Access Controls
Mandatory access control (MAC) is a hierarchical access
control mechanism that uses labels to enforce security poli-
cies [2]. Roughly speaking, every object in the system is
assigned a security level (such as unclassified, secret,
top secret). To read an object, a subject must possess a
security level at least as high as that of the object. For ex-
ample, a process with top secret security clearance can
read a secret file. However, a subject cannot write to files
at lower security levels. From the previous example, the top
secret process should not read the secret file and write
its contents to an unclassified file, since this will lead to
information leakage.
Many operating systems implement MACs. In SELinux,

an administrator configures a MAC policy for the machine,
thus limiting the attack surface of an exploited system [1].
SELinux is based on Unix, which favors a subtractive per-
mission model (e.g., permissions are removed from already
privileged processes) [12]. Consequently, an administrator
writing a SELinux policy must define all the permitted behav-
iors of every application on the system. This process leads to
large and unwieldy policies, and places an enormous burden
on the administrator.
Asbestos and Eros are two more examples of MAC op-

erating systems. Asbestos supports decentralized MAC by
combining aspects of capabilities and information flow poli-
cies, thus avoiding the high administrative costs associated
with SELinux [7]. Eros is a pure capability-based microkernel
[19]. Both of these systems require applications to be ported
to fundamentally different application interfaces. In contrast,
XOS preserves the POSIX interface.

2.2 Client Side Systems
XOS is inspired by client platform systems that treat applica-
tions as distinct untrusted principals [3, 4, 16]. By assigning
permissions per-application, client platforms limit each appli-
cation’s access to user-owned resources. For example, mobile
devices restrict an application’s access to devices such as the

camera and the GPS. There are many existing implemen-
tations of client-side, per-application, permission granting
systems.
Manifests.Android devices require each application to store
a manifest file. This file defines the metadata and structure
of the application. The file also lists all permissions the ap-
plication will require to access sensitive user data (such as
contacts and SMS) and system features (such as the cam-
era and internet access) [3]. Unfortunately, manifests alone
are insufficient for enforcing the PoLP. Studies have shown
that application developers often list more permissions than
strictly necessary, leading to malware outbreaks [8].

Regardless, we argue that manifests are an important first
line of defense against over-privileged applications. XOS
adopts Android’s permissions manifest by requiring each
application to submit a policy that lists all the system re-
sources the application will use. XOS enhances the tradi-
tional manifest model by also rating the trustworthiness of
the provided policy. By restricting each application’s access
to the resources listed in its policy, XOS mitigates the effects
of an application compromise.
Prompts. By contrast, iOS devices prompt users the first
time an application tries to access a sensitive resource [4]. In
theory, prompts verify user intent. In practice, prompts are
ineffective because users become desensitized to repetitive
notifications, granting more permissions than necessary [11,
14]. XOS relieves users from reasoning about application-
level permissions.

3 Design
The XOS system assigns an explicit trust value to each pro-
cess. A process’s trust value determines which system re-
sources it can access and which operations it can perform.
System resources includememory, disk, file descriptors, ports,
and CPU time. Sensitive operations include IPC and certain
system calls (such as mprotect). The trust abstraction is sup-
ported by three components: the policy engine, the security
monitor, and the ML engine:

• The policy engine accepts a policy, presented by the
application at installation time, to determine the base
trust value of the application’s processes. The policy
outlines the system resources and system calls the
application will utilize. The application developer can
either write the policy herself, or employ a user-level
library to automatically generate the policy. The policy
engine sends its analysis to the ML engine.

• The security monitor intercepts every trap to the op-
erating system, and consults the application’s policy
before allowing the operation. For example, it will ex-
amine the arguments of the connect system call, and
verify these arguments against the application’s policy.
The security monitor can generate a trust notification
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to the user. A trust notification alerts a user of (1) a pro-
cess that violates the application’s policy (see section
3.4), (2) a process that cannot make forward progress
because of a low trust value (see section 3.2), or (3) a
process that is infected by “low laying" malware (see
section 3.5). It also generates a provenance graph per
process, to track the causal relations between system
level objects. This provenance graph is stored in the
ML engine.

• TheML engine takes the application’s policy, the analy-
sis generated by the policy engine, and the provenance
graphs generated by the security monitor as inputs.
It uses these inputs to get a fine-grain picture of a
process’s activity. The ML engine leverages this infor-
mation to detect advanced persistent threats (APTs).
In the case of an intruder, the ML engine can notify the
security monitor, which can raise a trust notification
to the application. The ML engine can also alert the
policy engine, so that a future process with a similar
policy can be assigned a low trust value.

As shown in Figure 1, all three components can update a
process’s trust value.

Figure 1. XOS’s architecture. The security monitor, policy
engine, and ML engine receive copies of each application’s
policy. The security monitor intercepts every system call
and checks if the application is in accordance with its policy.
The security monitor can send trust notifications in case of
a policy violation or trust deadlock. The security monitor
also generates data provenance. The ML engine accepts data
provenance and the policy engine’s analysis to help detect
low-laying malware. The ML engine can send notifications
to the security monitor and can alert the policy engine to
suspicious policies. The policy engine, security monitor, and
ML engine can update every process’s trust value.

3.1 Threat model
The primary principals in our threat model are XOS, the ap-
plications, and the users. If XOS is installed on a server, then
client-side code and data center operators are also principals.
XOS enforces the PoLP by requiring applications to earn the
operating system’s trust.
We consider users, who have accounts on the machine

running XOS, to be semi-trusted. The machine’s administra-
tor is responsible for assigning permissions to users through
DACs. DACs are orthogonal to the access controls enforced
by XOS; while DACs assign trust to users, XOS assigns trust
to processes. We assume that users will be savvy enough to
avoid installing malicious applications. We also assume users
are not actively attempting to subvert XOS; this precludes a
user from exploiting a side channel to extract information
from XOS, beyond what should be allowed by the process’s
trust value. However, XOS does not rely on users to enforce
the PoLP; regardless of Alice’s permissions, XOS will ensure
that any application Alice installs can only access system
resources proportional to the application’s trust level.
At installation time, XOS assumes that applications are

untrusted. By analyzing an application’s policy at installa-
tion time, the policy engine can starve an overtly insecure
application by assigning it a low base trust value. For exam-
ple, the policy engine will set a low base trust value to an
application that lists evil.com in its policy. XOS’s security
monitor will raise a trust notification if an application uses
resources not declared in its policy. Therefore, the security
monitor defends against a careless application that presents
an incorrect policy to the policy engine. The security monitor
also defends against an insecure application infected by mal-
ware; the malware might use resources that the application
did not declare in its policy.
A key challenge in XOS is assigning trust to insecure ap-

plications susceptible to “low laying" malware. Consider an
insecure application that presents a reasonable policy to the
policy engine and gains a baseline trust value. Suppose mal-
ware attacks the application; however, this malware avoids
detection from the security monitor by using resources al-
ready declared in the policy. Instances of such malware have
grown increasingly common. For example, in an advanced
persistent threat (APT), an attacker tries to gain control of
a system while remaining undetected for a long time [5].
XOS’s ML engine makes use of provenance-based anomaly
detection to defend against this style of attack [9].

In the case of a distributed system, we assume that client-
side code will forward the user’s request to the server run-
ning XOS. A data center operator has physical access to
servers, which enables direct manipulation of server RAM.
Therefore, our current design assumes that data center oper-
ators are trusted.
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3.2 Trust Value
A trustworthy application will:

1. Do the right thing
2. Do what it says it will do

Trust values assigned by the policy engine and ML engine
approximate the first metric, while the trust values assigned
by the security monitor approximate the second metric.

An application’s policy sets an upper bound on per-process
system resource consumption. However, a new process will
not be able to access all of the listed resources immediately.
Instead, each process will only be able to access resources pro-
portional to its trust value. XOS stores an internal mapping
between resources and trust values, called a trust reference.
XOS has a default global trust reference; however, the admin-
istrator can override this trust reference with a customized
global trust reference, or customized per-application trust
references.

Consider a text editor application that provides the policy
in Figure 2. Suppose the policy engine deems the policy
to be untrustworthy, and assigns a low base trust value to
the application’s processes (see Section 3.3). In this case, a
process will be disallowed from using port 80 immediately
after installation: even though the process did not violate the
system’s trust (e.g., port 80 is in the application’s policy), the
process did not earn enough trust to access ports, according
to the default trust reference.
A process can experience trust deadlock if it has a low

trust value and cannot make forward progress due to its
trust level. Suppose the text editor’s process cannot make
forward progress without using port 80. In this case, the
process will neither have enough trust to use port 80, nor
be able to earn more trust due to its dependence on port 80,
resulting in a deadlock. The security monitor sends a trust
notification to alert the user of a trust deadlock.
There are two ways to resolve trust deadlock. One op-

tion involves the application to revising its policy to earn a
higher base trust level. This approach encourages developers
to write security-oriented applications. Unfortunately, this
approach also requires user intervention. In particular, a user
must uninstall, download, and re-install the application so
that the new policy can be processed by the policy engine.
Another way to resolve deadlock involves a trusted appli-
cation vouching (e.g., transferring some of its trust) to the
deadlocked application (see section 3.6).

3.3 Policy Engine
During installation, an application must present a policy to
XOS. The policy engine examines the policy to assign a base
trust value to the application. An example policy for a text
editor application might look like Figure 2.

The policy engine uses three metrics to rank the trustwor-
thiness of a policy.

Figure 2. An example policy for a text editor application

• Whitelists/Blacklists: The policy engine checks some
values against known good values and known bad val-
ues, which are stored in whitelists and blacklists, re-
spectively. The machine administrator is the only user
that can modify these lists. When examining Figure 2,
the policy engine might find good.com on a whitelist,
increasing the policy’s trustworthiness.

• The thorough developer: An application developer
can configure as many, or as few, of the optional policy
fields as she likes. For example, the policy in figure
2 does not place an upper bound on the number of
files the application will access. However, the policy
engine rewards a thorough developer by assigning
her application a high trust value. Detailed policies
help the security monitor flag anomalous behavior
caused by malware. This metric also encourages good
program hygiene by forcing the developer to reason
about resource consumption.

• Similar Applications: The policy engine uses the
App Type field to compare the policy to an existing
application’s policy. For example, the policy engine
would compare Figure 2 to a preexisting text editor’s
policy. The engine uses the older application’s policy,
base trust level, and current trust level to infer the new
application’s base trust level. For example, the policy
engine might find that the pre-installed text editor ap-
plication currently has a high trust value. However,
since the pre-installed application did not require any
ports, the policy engine might assign the new appli-
cation a lower base trust value than the pre-installed
application’s base trust value.

The policy engine sums the result of all three metrics to come
up with a base trust value for the application’s processes.
The policy engine also sends its analysis to the ML engine,
to aid with intrusion detection.

3.4 Security Monitor
The security monitor intercepts every context switch into
the operating system, and checks if the requested operation
is compliant with the application’s policy. For example, a pro-
cess in the text editor application might call fork; however,
the security monitor will disallow this system call since fork
is not listed in the text editor’s policy (Figure 2). In a naive
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implementation, the security monitor would add overhead to
every system call. Our system uses the insight that a highly
trusted process will require less monitoring. Therefore, for a
given process, the overhead imposed by the security monitor
is inversely proportional to the trust value of that process.
Unfortunately, low-laying malware, such as APTs, may

abuse the high trust level of a process to avoid the security
monitor. To monitor such cases, the security monitor col-
lects provenance at every system call. Provenance captures
casual relationships between systems-level objects. The se-
curity monitor sends this data to the ML engine for further
processing (see Section 3.5).
The security monitor can generate a trust notification to

the user. A trust notification alerts a user of (1) a process
that violates the application’s policy, (2) a process that is
trust-deadlocked, or (3) a process that is infected by “low
laying" malware (see section 3.5).

3.5 ML Engine
The ML engine’s primary goal is to detect low-laying mal-
ware. We assume that the ML engine is trained with “good
system behavior", which can be captured during a model-
ing period before the machine is in use. During runtime,
the ML engine ingests provenance collected by the security
monitor. Data provenance represents system execution as a
directed acyclic graph (DAG) that describes information flow
between system subjects (e.g., processes) and objects (e.g.,
files and sockets) [15]. The ML engine adopts UNICORN, a
provenance-based anomaly detector, to identify low-laying
malware [9]. TheML engine can flag suspicious behavior and
send an intrusion detection notification to the security mon-
itor, which can forward the message as a trust notification
to the user.

TheML engine also receives every application’s policy and
the accompanying analysis produced by the policy engine.
The ML engine can help assess the quality of a policy since
it receives fine-grained information about each process. For
example, the ML engine can alert the policy engine of a
policy that is susceptible to low-laying malware.

3.6 Transferring Trust
The fork and exec system calls can effect a process’s trust
value. In particular, a fork-ed process will inherit the parent
process’s trust level, and an exec-ed process will inherit the
application’s base trust level.
To help prevent trust deadlock, a high trusted applica-

tion can transfer trust to a low trusted application. Each
application’s policy can include a list of vouchees. For ex-
ample, Google Chrome may vouch for Adobe Flash Player.
During a trust deadlock, Adobe Flash Player may request
some trust from Google Chrome. The voucher is penalized
if the vouchee breaks the system’s trust. For example, if
Adobe Flash Player violates its policy, then the system will
decrement both Adobe Flash Player and Google Chrome’s

trust values. Of course, a key challenge will be to analyze
Chrome’s incentives for vouching for Adobe Flash Player.

4 Discussion
The current iteration of XOS assumes that users will avoid
installing malicious applications. A stronger threat model
would allow a user to install any type of application. In this
case, XOS will have to prevent malicious applications from
earning the system’s trust. Preventing malicious applications
from earning trust will be difficult. For example, a malicious
application can easily earn a high base trust value by pre-
senting a reasonable, yet over-inclusive policy. A malicious
application could also steadily accumulate the system’s trust,
as long as it does not violate its policy. Neither the policy
engine nor the security monitor can provide enough detailed
insight to determine the intent of an application. Therefore,
we envision the ML engine as the primary defense against
malicious applications.
XOS will have to be heavily optimized to be deployed

on commodity desktop and server systems. We proposed
a heuristic to reduce the overhead of the security monitor.
However, the ML engine may also impose significant over-
head on the overall system. We look to previous work in
system-level data provenance analysis to make this feature
efficient.
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