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Abstract

In this project we aim to provide systems level support for applications to efficiently
implement ”the right to erasure” as outlined in the General Data Protection Regulation
(GDPR). As a starting point, we study a spreadsheet application which provides sim-
ple yet nontrivial semantics. We define deletion semantics for standard spreadsheet
functions to ensure that functions evolve in a way that preserve the functionality of
the application. We also support efficient deletion by introducing aggregation points,
function decomposition and coalescing. We attempt to show that a spreadsheet appli-
cation can be used to represent a database for a higher level application. To do so, we
create spreadsheet functions to represent a list data structure and list operations. We
then create a mapping between Trello, a workflow application, and our spreadsheet,
and conclude that Trello is amenable to spreadsheet-like deletion semantics.

1 Introduction

In the age of big data, many applications have migrated users’ private data from local
machines to cloud storage. As a result, these applications are able to derive and dissemi-
nate information from stored server-side state, leaving users little control over how their
private data is used. In response to the growing lack of user visibility into and control
over data in the cloud, the EU passed the General Data Protection Regulation (GDPR). The
GDPR outlines many high-level requirements for companies to follow, so that users can
be re-equipped with control over their private data. For example, Article 17 of the GDPR
mandates that users have the right to demand their personal data be deleted from an appli-
cation. Unfortunately, however, the GDPR lacks the technical, systems level specifications
to enforce such policies among a wide range of applications.

The high-level goal of this project is to implement Article 17, aka ”the right to erasure”,
of the GDPR. While there exist some tools to create applications compliant with Article
17, these tools are neither very sophisticated, nor generalizable to arbitrary applications.
For example, one can easily avoid detection from Office 365’s tool, which uses regular-
expression matching to find and remove sensitive data (e.g. SSNs). Therefore, we will
attempt to provide systems-level support for splicing a user’s data from a program. This
problem is challenging because an arbitrary program written in an arbitrary language may
include arbitrary data structures, each of which has application-specific semantics.

In this project, we study a subset of the automated user data deletion problem by
focusing on a simpler, well-defined spreadsheet application. A spreadsheet application
provides simple semantics because it only supports a limited number of data types and
restricts the expressiveness of functions. A spreadsheet, additionally, provides nontrivial
semantics to study because of its inclusion of formulas. For example, it is not immedi-
ately clear how a formula should evolve when its underlying data is deleted. It is also
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unclear how the modification of one formula may affect the functionality of the rest of the
spreadsheet. Therefore, the first goal of this project is to design semantics such that when
values are deleted, formulas evolve in a way that (1) keep deletion efficient (2) preserve
the functionality of the original spreadsheet.

A spreadsheet is also interesting to study because it can represent a database for a more
complicated application. For example, we will show that Trello, a workflow application,
can be modeled by our spreadsheet through converting it’s high level objects into list data
structures. As such, the second goal of this project is to determine which subset of appli-
cations in general are amenable to spreadsheet-like deletion semantics.

2 Background

Several projects have attempted to create GDPR compliant applications; however, these
projects are unable to handle the data splicing problem for applications that contain mul-
tiple users. For example, Riverbed, a distributed web platform, provides a information
flow control (IFC) mechanism to prevent sensitive data from flowing to disallowed sinks
like storage devices. Applications running atop Riverbed are completely unaware that the
IFC is occurring; therefore, Riverbed compatible with code that has not been explicitly
annotated with traditional IFC labels. In order to avoid conflicts between different data
flow policies, Riverbed spawns a lightweight copy of the service for each group of users
who share the same policies. Each copy of the service is referred to as a universe. For
example, if Alice and Bob’s policies allow aggregation, but Charlie’s policy does not, then
Alice and Bob will be placed into one universe and Charlie will be placed into another.
However, because Riverbed is application-agnostic, the platform has no way to automati-
cally splice a user’s data out of one universe and into another. Continuing from the above
example, if Bob changes his policy, Riverbed must use application specific methods to ex-
tract Bob’s data from Alice’s. Riverbed, then, must also use application specific methods
to delete Bob’s data from the old universe, as well as re-inject Bob’s data into the new uni-
verse. Therefore, Riverbed does not provide a clean solution for splicing user data out of
universes.

Rust’s ownership model provides an interesting insight on how to splice aggregated
data. The ownership model specifies the following rules: 1) Each value in Rust has a vari-
able that is called its owner and 2) There can only be one owner at a time (cite). As a
consequence of these semantics, each program variable in Rust can only be referenced by
a single incoming pointer. Therefore, the state of a Rust program can be represented by a
set of trees, where each tree represents a collection of parent/child relationships between
variables 1. Lack of cycles in Rust’s model would help restrict the possible cascading im-
pacts of deletion. Unfortunately, however, Rust’s ownership model is too restrictive to use
for a spreadsheet application, since one cell may be referenced in many different formulas.

1Rust uses ownership semantics to make memory allocation and deallocation simpler: when an object’s
owner goes out of scope, the entire tree is deallocated.
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3 Design

3.1 Definitions

A spreadsheet application consists of three abstractions: values, cells, and functions.

• A value can be an integer, float, or string. A value is owned by the user who inserted
the value into the spreadsheet. Every value has a permanent owner for its lifetime
inside the spreadsheet.

• A cell is a location in the spreadsheet, and is referred to by its grid-wise coordinates.
For example, A1, and B1 are both cells in a spreadsheet.

• A function is an expression composed of operators and operands. Operators in-
clude our standard notion of arithmetic, relational, logical and bitwise operators.
Operands include values, references to cells, and functions. For example SUM(A1,
A2) is a function that is composed of an arithmetic operator and two references to
cells.

When a user inserts data into the spreadsheet, she is dynamically bounding her value to
a cell. For example, if a user, Alice, inserts her SSN at cell A1 inside the spreadsheet, the
SSN is the value, Alice is the owner of that value, and the SSN lives at location A1 inside
the spreadsheet. Furthermore, a value may migrate to different cells over the evolution of
the spreadsheet. For example, Alice’s SSN may be moved to cell A2 at some future point;
however, we maintain the invariant that the SSN is still owned by Alice.

A function can be a standard spreadsheet function such as SUM(), or a user defined
function constructed from several standard functions. In general, functions act as aggrega-
tion points for cells. For example, functions either aggregate values from the same owner,
as done in function SUM(C1, C2) in Table 1, or aggregate values from multiple owners,
as done in function SUM(A1, A2, B1) in Table 1.

We divide the overall spreadsheet application into two logical namespaces: the cell
namespace, and the function namespace. The cell namespace will contain cells and values,
and will be accessible to all users that must input data into the spreadsheet. The function
namespace will contain functions. Every function that has a distinct entry in the function
namespace is called a named function. For example, every user defined function is an
named function. Functions 1, 2 and 3 in Table 1 are also examples of named functions.
A function is considered to be an anonymous function if it serves as an operand to an-
other function, but does not have a distinct entry in the function namespace. For example,
the standard spreadsheet function AVERAGE() is implemented with anonymous SUM()
and DIV() functions. The DIV() function nested inside SUM(DIV(A1, A2), F2) is an-
other example of a anonymous function. There exists one function namespace per user
who issues computations over the values inside the cell namespace. For example, if Alice
chooses to sum over a range of cells, the function associated with this computation will be
stored inside of Alice’s function namespace. Then if Bob chooses to carry out a different
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computation, the associated function will be stored inside of Bob’s function namespace.
While in general, we can have an arbitrary number of function namespaces, in Table 1, we
have made the simplifying assumption that the ”application owner” is only user who is
computing over values; therefore, there is exactly one function namespace.

Cell Namesapce Function Namespace
A B C f1 SUM(A1, A2, B1)

1 666 7 -3 f2 SUM(C1, C2)
2 0.42 Hello World 77 f3 SUM(DIV(A1, A2), f2)

Table 1: Alice enters values in column A, Bob enters values in column B and Charlie enters
values in column C. The spreadsheet owner computes over the available values in the
function namespace.

Figure 1: Object graph showing the relationship between cells and f1 in Table 1

3.2 Threat Model

We assume that the owner of the spreadsheet is honest but curious. Specifically, our threat
model excludes an actively malicious developer who would take steps to record user data.
This includes a developer who might take snapshots of the spreadsheet state, to enable
subsequent inspection of what user data looked like a prior time. This also includes a
developer who would attempt to pass information via side channels by encoding meaning
inside specific functions.

Similarly, we assume that the users of the spreadsheet are also honest but curious.
Specifically, we exclude users who might try to take active steps to record other users’
data. For example, we would exclude a user Bob who would actively view Alice’s data,
and re-enter that data into the spreadsheet as his own. User’s are restricted to entering
primitive values and functions into the spreadsheet; compound values, comments, and
arbitrarily-encoded binary data are disallowed.

3.3 System Guarantees

Users can issue two types of deletion requests: (1) a value deletion request (2) a function
deletion request. Value deletion requests can only be issued by the owner of the value and
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function deletion request can only be issued by the user who defined the function. For
example, in Table 1, Alice can issue a value deletion request for her values located in cell
A1 and A2. Similarly, the application owner can issue a function deletion request to delete
SUM(B1, C2).

To complete a function deletion request, we must delete the named function that was
specified in the request. This includes deleting any anonymous functions that the named
function might reference. However, we need not to delete any named functions that the
original function might reference. For example, if the application owner requested to
delete SUM(DIV(A1, A2), f2) in Table 1, we would also have to delete the anonymous
function DIV(A1, A2). However, we would not delete SUM(B1, C2), which the origi-
nal function contains a reference to via the cell name f2. Function deletion requests only
modify the function namespace.

To complete a value deletion request, we first delete the the specified value from the
cell namespace. Next, our runtime must adjust the formulas in the function namespace to
reflect the deletions to the cell namespace. Therefore, value deletion requests modify both
the cell and function namespaces. When modifying the function namespace, our runtime
keeps two goals in mind: (1) keep deletion efficient, and (2) maintain the functionality of
the original spreadsheet. In the following sections, we introduce aggregation points and
function decomposition to implement efficient deletion, and deletion semantics to main-
tain the functionality of the spreadsheet.

3.4 Aggregation points

Aggregation points are useful for quickly locating a values in the cell namespace. In order
to implement this optimization, our runtime will insert a aggregation point per user to
track inputted values.

Figure 2: Object graph from Figure 1 updated with aggregation points

Then when the user issues a value deletion request, our runtime will look to the user’s
aggregation point and delete all requested values from the cell namespace. Therefore,
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aggregation points support efficient deletion by eliminating traversals through the cell
namespace.

3.5 Function Decomposition

When our spreadsheet receives a new function, it may internally decompose the function
into a collection of sub-functions, each with one owner, that compute an equivalent result.
Decomposition enables faster re-computation of a modified top-level function because the
outputs of the constituent sub-functions can be cached; when a sub-function is deleted, the
spreadsheet only needs to combine the cached outputs of the remaining sub-functions, in-
stead of having to re-execute all of the remaining sub-functions. Function decomposition
can only occur when (1) a function consumes two or more values (2) the input values be-
long to at least two different users, and (3) the sub-functions functions can be re-combined
in a way that is equivalent to the original function.

Figure 3: Object graph with aggregation points and function decomposition

For example, suppose we have a function SUM(A1, A2, B1, B2, C1, C2) where Ax
belongs to Alice and Bx belongs to Bob and Cx belongs to Charlie. Then suppose that Bob
requests deletion. If we cached intermediate computations SUM(A1, A2), SUM(B1, B2)
and SUM(C1, C2), as shown in Figure 3, then upon Bob’s deletion we would only need
to add the pre-computed sums for Alice and Charlie to obtain our new sum. However,
if we did not store these intermediate computations, then upon Bob’s deletion, we would
have to iterate through all of the remaining values to recompute SUM(A1, A2, C1, C2). The
performance differences between the two schemes gets larger as the number of leaf nodes
in the object graph increases. Therefore, storing intermediate computations from the same
owner avoids unnecessary re-computation, and thus speeds up the deletion process.

3.6 Deletion Semantics

In this section we will specify deletion semantics for standard spreadsheet functions, in
order to maintain the functionality of the original spreadsheet. The chart below shows
standard spreadsheet functions grouped by the deletion semantic and type of operator.
Note that these two categories are orthogonal; two operators with different types can have
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the same deletion semantics. Similarly, two operators with the same type may have differ-
ent deletion semantics.

Operator Function # of Operands Deletion Condition

Semantic 1

Arithmetic Sum

At least one No operands left

Product
Max
Min
Count

Logical And
Or

Semantic 2

Arithmetic Division

Exactly two Any operand deleted

Subtraction
Relational Equal

Less Than
Greater Than

Logical Xor
Bitwise And

Or
Xor

Semantic 3 Arithmetic Average At least one No operands left

Semantic 4 Other If Exactly three Any operand deleted

Table 2: Standard spreadsheet functions grouped by operator and deletion semantics.

Semantic one includes commutative functions that take multiple arguments. All func-
tions in this category make use of the function decomposition optimization discussed in
the previous section. We note that this decomposition varies between functions in this
category. For example, when SUM is decomposed, the resulting sub-functions and the
parent aggregation function have the same type, that is SUM. However, when COUNT is
decomposed the resulting sub-functions and the parent aggregation function have differ-
ent types; the sub-functions are COUNTs while the parent aggregation function is a SUM.
Regardless of possibly different decomposition characteristics, we maintain the invariant
that functions in this category can be properly decomposed to avoid re-computation.

To demonstrate this semantic in action, consider the function SUM(A1, A2, B1, B2)

where Alice owns cells Ax and Bob owns cells Bx. We start by decomposing this function
into the intermediate computations SUM(A1, A2) and SUM(B1, B2). If Alice requests
her values to be deleted, we will delete A1 and A2 from the object graph. Next, we will
delete SUM(A1, A2) since both of its operands have been deleted. This leaves us with the
function SUM(B1, B2) pointing to Bob’s intermediate computation SUM(B1, B2).
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(a) Object graph prior to Alice’s deletion (b) Object graph after Alice’s deletion

Figure 4: Object graphs demonstrating SUM() deletion semantics

Semantic two includes functions that are mathematically defined to take exactly two
operands. We recall that a function can only be decomposed if it is possible to recombine
the sub-functions in a way that is equivalent to the original computation. However, if we
decompose a function in this category we would create sub-functions that have no mathe-
matical meaning. As a result, it would be impossible to recombine the sub-functions in a
way that is equivalent to the original computation. For example, if we tried to decompose
DIV(A1, B1), we would be left with some variation of functions that look like DIV(A1)
and DIV(B1). However, neither DIV(A1) nor DIV(B1) are mathematically defined, so
there would be no way to re-combine them to obtain a value equivalent to the original
DIV(A1, B1). Therefore, we do not decompose functions in this category. Furthermore,
because these functions are only mathematically defined to take two operands, we delete
these functions if either operand is deleted.

Semantic three is only used by the AVG() function. This function is implemented with
SUM(), COUNT() and DIV() functions. If any of the anonymous functions that implement
AVG() get deleted, AVG() also gets deleted. For example, if all the values to be averaged
get deleted, then according to semantic one both SUM() and COUNT() must be deleted,
which would result in DIV() being deleted according to semantic two. Therefore, the
enclosing AVG() function will also be deleted.

Semantic four is only used by the IF() function. The default version of this function
takes in three operands and is deleted when any of the operands are deleted. For example,
if we have the function IF(A1 > B1, SUM(A1, A2) DIV(B1, B2)), then the entire
function will be deleted if any of A1 > B1, SUM(A1, A2) or DIV(B1, B2) are deleted.
However, it is possible that the application owner might want to keep the IF() function
even if the second or third operands are deleted. For example, the application owner might
want to maintain the functionality of the previous IF() function even if DIV(B1, B2)

was deleted. In this case, we allow the application owner to override the default deletion
semantic so that a particular IF() function will not be deleted if either the second or third
operands are deleted. Regardless, in both the default and customized deletion semantics,
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we keep the invariant that if the first operand is deleted, then the IF() function must be
deleted.

3.7 List Data Structure

So far our discussion of deletion semantics has only included functions available in a stan-
dard spreadsheet application. All of such functions are static, meaning that once created,
excluding deletion, the number of operands inputted to these functions do not change.
However, in order for a spreadsheet to represent the database of a higher level application,
we must allow the number of operands to these functions to evolve over time. Therefore,
in this section we will equip the spreadsheet application with a list data structure that can
serve as an input to static functions.

We will define two functions to enable dynamic computations in our spreadsheet:
LIST(Head) and LIST(Head, Tail). The function LIST(Head) specifies all values
in a column starting with Head and ending with the last non-empty cell in the column.
Similarly, the function LIST(Head, Tail) specifies all values in a column starting at
Head up to Tail. Both of these functions are typically inputs to a static spreadsheet func-
tion. For example, the function SUM(LIST(A1)) is interpreted as ”sum over all the values
starting at cell A1 ending with the last non-empty cell in column A.” Just like static func-
tions, the list functions live in the function namespace and can be invoked by any user.

When we delete a value that is referenced by a LIST function, we must update the
LIST function to reflect the new range of populated cells. To do so we can either re-write
the LIST function and keep the cell namespace the same or update the cell namespace and
keep the LIST function the same. For example, if we have the function LIST(A1) and
the value in cell A1 is deleted, we could either re-write the function to LIST(A2) or move
all the cells one position upwards to avoid modifying LIST(A1). To support efficient
deletion, we want to avoid function re-writing; therefore, upon deletion, we will update
the cell namespace to minimize changes to the LIST functions.

In order to update the cell namespace, we will introduce a technique called coalescing.
Coalescing is the act of re-arranging cells per column, such that the column contains a
contiguous region of cells with values. Coalescing must preserve the ownership of values,
and the spatial relationships between the cells that values are bound to.
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(a) Cell namespace prior to coalescing (b) Cell namespace after coalescing

Figure 5: Green cells are owned by Alice and blue cells are owned by Bob

Therefore, when a user issues a deletion request for a value referenced in a LIST func-
tion, coalescing happens upwards to the Head of the LIST. Coalescing also provides an
advantage in improving spreadsheet readability.

Coalescing, however, does not prevent all LIST function re-writing. For example the
function LIST(Head, Tail) will have to be re-written at every deletion in order to up-
date the Tail. Furthermore, coalescing can cause a cascading number of function re-
writes in the case of nested lists. For example, consider the following functions: LIST(A1,
A6), LIST(A2, A5) LIST(A3, A4). In this case, if we were to delete A1, the functions
would be updated to: LIST(A1, A5), LIST(A1, A4), LIST(A2, A3). Notice, how for
the latter two functions, both the Head and the Tail had to be re-written due to coalesc-
ing. In our model, we assume that nested lists will not be a common use case, and thus
are not optimized for. However, we could imagine a scenario where each nested list was
written in its own column to prevent extra Head re-writes.

Finally, in order to maintain spreadsheet functionality, we must specify the deletion
semantics for both LIST functions. The function LIST(Head) is deleted when there are no
longer any values in the column starting from Head. Similarly, the function LIST(Head,

Tail) is deleted when there are no values contained between Head and Tail.

3.8 Assignment Operators

Finally, in order for a spreadsheet to model a higher level application we need to define a
mechanism to populate values inside the cell namespace. To do so, we define the following
assignment operators: OVERWRITE(Cell, Value), LIST INSERT(Cell, Value),
MOVE(Cell, Value), LIST TRANSFER(Cell, Value) .

The function OVERWRITE(Cell, Value) gives users the ability their input value at
a specific location in the cell namespace. For example, OVERWRITE(A1, 42) allows a
user to insert the value 42 at cell A1. If the cell is previously occupied, then the function
will overwrite the old value, granted that the owner of the old value matches the user
who invoked OVERWRITE. For example, if A1 contained the value 666 owned by Alice,
and Alice called OVERWRITE(A1, 42), then cell A1 would now contain the value 42.
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However, if Bob called OVERWRITE(A1, 42) the function would return an error.
The function LIST INSERT(Cell, Value) allows users to append their Value to

a location inside a preexisting list. We note that this function is orthogonal to the OVER-
WRITE(Cell, Value) function. For example, in order to overwrite a value in a list, we
would have to use the OVERWRITE function. However, to add a new value to a list, we
must use the LIST INSERT function. To implement LIST INSERT, we first move every
value, starting from Cell, one position down. Then we insert Value at position Cell,
and update any affected LIST functions. For example, if we called the function LIST

INSERT(A3, 42), we will move all cells starting from A3 down one position, insert 42 in
cell A3, and update the Tail for the appropriate LIST functions. This function will return
an error if the Cell is not contained within a LIST.

To implement MOVE(Cell, Value), we first find and delete Value from the cell
namespace. Next, we simply call OVERWRITE(Cell, Value). Similarly, to implement
LIST TRANSFER(Cell, Value) we delete the Value from the cell namespace and call
LIST INSERT(Cell, Value).

Unlike all of the operators we have defined so far, we do not store these assignment
operators in the function namespace. As a result, we need not define deletion semantics
for these functions. However, we could imagine a scenario where we store functions in
a separate log to show how the spreadsheet evolves over time. In this case, if a user re-
quested to be deleted, we would also delete all of her logged OVERWRITE, LIST INSERT,
MOVE, and LIST TRANSFER functions.

4 Trello

In this section we will show how the workflow application, Trello, can be mapped to a
simple spreadsheet application. A Trello application consists of Lists, Cards, Checklists,
Tasks, and Activity Log objects. The relationship between these objects is shown below.
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Figure 6: In this workboard, we have one list, that contains one card. This card has both a
checklist and an activity log. The checklist contains two tasks.

To map Trello to our spreadsheet application, we first must decide ownership seman-
tics per Trello object. We start by noting that users own their entries in the activity log.
For example, in Figure 6, Alice owns ”Alice created a new task”. For the rest of the Trello
objects, we give users ownership over their membership status, while giving the work-
board owner ownership over the metadata associated with each object. For example, in
Figure 6, Bob owns his membership status in the task and the workboard owner owns the
task name, status, and created fields. These semantics prevent the scenario where deleting
Bob’s data results in deleting the entire task.

Next, we must convert each Trello object into our spreadsheet abstractions. The below
figure shows the spreadsheet representation of Figure 6.
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(a) Green cells owned by Alice, blue cells owned by Bob, yellow cells owned by Charlie and gray
cells owned by Workboard owner

Figure 7: Spreadsheet representation of the Trello application in Figure 6.

We start by creating a spreadsheet function per high level Trello object. Next, we must
specify the operands to each function. The operand to the ACTIVITY LOG function will
be a LIST that represents all log entries. For example, to convert the Figure 6’s Trello
activity log, we list all of the log entries in column E of the cell namespace and create
function f11: ACTIVITY LOG(LIST(E1)) in the function namespace of Figure 7. The
operands to the TASK function will be a METADATA function and MEMBER function. The
METADATA and MEMBER functions will each take in a LIST of values, where the values are
owned by the semantics described previously. Then to convert Figure 6’s Trello task ”Take
out the trash”, we list the task’s members in column A and task’s metadata in column B in
the cell namespace of Figure 7. We then create functions MEMBER(LIST(A1) and META-

DATA(LIST(B1) as operands to f8: TASK(f1, f2) in Figure 7. The operands to the
CHECKLIST function will be TASK functions. For example, Figure 6’s checklist is repre-
sented by f10: f8, f9) in Figure 7, where f9 and f10 are both TASK functions. The
operands to a CARD function will include METADATA and MEMBER functions. A CARD func-
tion might also take a CHECKLIST and ACTIVITY LOG function, as operands as shown in
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f12: TASK(f5, f6, f10, f11) of Figure 7. Finally, the operand to a TRELLO LIST

function will be a METADATA list and as many CARD’s associated with the Trello list. For
example, Figure 6’s Trello list is represented by f13: TASK(f7, f12) where f7 is a
METADATA list shown in column H of the cell namespace and f12 refers to a CARD function.

The below table summarizes the deletion semantics for each of the Trello spreadsheet
functions.

Function Possible Operands Deletion Condition

Trello List Metadata, Card(s) Metadata is deleted

Card Metadata, Activity Log, Checklist, Member Metadata is deleted

Checklist Metadata, Task(s) Metadata is deleted

Task Metadata, Member Metadata is deleted

Activity Log List of values owned per user Deletion condition for LIST

Member List of values owned per user Deletion condition for LIST

Metadata List of values owned by workboard owner Deletion condition for LIST

Table 3: Deletion semantics for Trello functions

From this table, we note that a TRELLO LIST, CARD, CHECKLIST, and TASK func-
tions can only deleted if the associated METADATA function is deleted. As described above,
the METADATA function has the typical LIST semantics, where every cell is owned by the
Trello workboard owner. Therefore, consistent with the actual Trello application, the work-
board owner controls the deletion of high-level Trello objects. Furthermore, users are able
to control their membership for each object via the assignment operators described in the
previous section.

Suppose Charlie, from Figures 6 and 7, requested all his data be deleted. According to
our deletion semantics, our spreadsheet application would look like:

Figure 8: Cell namespace from Figure 7 after Charlie requests deletion. Note, this repre-
sents the cell namespace after coalescing. We do not show the function namespace of the
spreadsheet, since it has not changed.
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This would result in a Trello level application that looks like:

Figure 9: Representation of Trello application after Charlie requests deletion. Notice how
the Members fields of the Card and Tasks have changed. Also notice Charlie’s activity log
entries are no longer present.

which looks exactly as expected. Therefore, we have successfully created a mapping from
Trello to our spreadsheet application and we can conclude that Trello has spreadsheet-like
deletion semantics.

5 Conclusion

In this project we studied a subset of the automated user data deletion problem by focus-
ing on a spreadsheet application. We designed deletion semantics such that when values
are deleted, formulas evolve in a way that preserve the functionality of the original spread-
sheet. We supported efficient deletion by introducing aggregation points, function decom-
position, and coalescing. In order for our spreadsheet to represent a database for a high
level application, we created new functions to represent a list data structure and list op-
erations. Through these tools, we created a mapping between Trello and our spreadsheet,
and concluded that Trello is amenable to spreadsheet-like deletion semantics.

6 Future Work

The next step for this project will be to determine the general properties of a spreadsheet-
amenable application. We hope to use this insight to find more applications that can be
mapped to our spreadsheet.
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